Structure and Randomness of Continuous-Time, Discrete-Event Processes
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process’ intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifi...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2017-10, Vol.169 (2), p.303-315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process’ intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (
ϵ
-machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-017-1859-y |