Homogeneous Einstein (α,β)-metrics on compact simple Lie groups and spheres
In this paper, we study homogeneous Einstein (α,β)-metrics on compact Lie groups and spheres. We first show that any left invariant Einstein (α,β)-metric on a connected compact simple Lie groups except SU(2) with vanishing S-curvature must be a Randers metric. Secondly, we prove that any Sp(n+1)-inv...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2017-01, Vol.148, p.147-160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study homogeneous Einstein (α,β)-metrics on compact Lie groups and spheres. We first show that any left invariant Einstein (α,β)-metric on a connected compact simple Lie groups except SU(2) with vanishing S-curvature must be a Randers metric. Secondly, we prove that any Sp(n+1)-invariant Einstein (α,β)-metric on S4n+3(n∈N+) with vanishing S-curvature is either a Randers metric, or SU(2n+2)-invariant. Finally, we give a complete description of SU(n+1)-invariant Einstein Finsler metrics on S2n+1(n≥2). |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2016.09.016 |