Ultra-Sensitive Optical Resonator for Organic Solvents Detection Based on Whispering Gallery Modes

In this paper, a novel technique using an ultra-sensitive optical resonator based on whispering gallery modes (WGM) is proposed to detect the diffusion of organic solvents. The sensor configuration is a micro-cavity made of polymeric material. When the solvent starts to diffuse, the polymer of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosensors 2017-06, Vol.5 (2), p.19
Hauptverfasser: Ali, Amir R., Elias, Catherine M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel technique using an ultra-sensitive optical resonator based on whispering gallery modes (WGM) is proposed to detect the diffusion of organic solvents. The sensor configuration is a micro-cavity made of polymeric material. When the solvent starts to diffuse, the polymer of the cavity starts to swallow that solvent. A swollen elastomer is in fact a solution, except that its mechanical response is now elastic rather than viscous. As solvents fill the network, chains are extended. In turn, that leads to the change of the morphology and mechanical properties of the sensing element. These changes could be measured by tracking the WGM shifts. Several experiments were carried out to measure that swelling force. Ethanol and methanol are used in this paper as candidates to study their driving force of diffusion (concentration gradient) on the cavity. Additionally, this sensing design can be used for biological sensing application. Breath diagnosis can use this configuration in diabetes diagnosis since a solvent like acetone concentration in human breath leads to a quick, convenient, accurate, and painless breath diagnosis of diabetes. The optical resonator results are verified through two different analyses: theoretical and experimental modeling. These micro-optical cavities have been examined using preliminary experiments to fully investigate their response and to verify the numerical analysis. Results show that the proposed sensor yields sensitivity for the driving force of diffusion (concentration gradient) (9.405 × 1013 pm/N) with a measurement precision of ~3.6 fN.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors5020019