The Disk-Driven Jet of Cygnus A

Recently published results from VLBI observations at 3 and 7 millimeters of the radio galaxy Cygnus A are reviewed in this article, and discussed within the model of a prominently stratified jet outflow. At the source redshift ( z = 0.056), mm-VLBI allows a spatial resolution down to 200 Schwarzschi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Galaxies 2017-04, Vol.5 (2), p.22
Hauptverfasser: Boccardi, Bia, Krichbaum, Thomas, Bach, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently published results from VLBI observations at 3 and 7 millimeters of the radio galaxy Cygnus A are reviewed in this article, and discussed within the model of a prominently stratified jet outflow. At the source redshift ( z = 0.056), mm-VLBI allows a spatial resolution down to 200 Schwarzschild radii to be achieved, providing an extremely detailed view of the two-sided jet base. Through a study of the kinematic properties of the flow and of its transverse structure, it is shown that the radio emission is produced by an accelerating, mildly relativistic, parabolically expanding disk-wind. The observed transverse stratification, both of the flux density and of the bulk speed, supports the presence of an invisible faster spine close to the jet axis, powered either by the inner regions of the accretion disk or by the spinning black hole.
ISSN:2075-4434
2075-4434
DOI:10.3390/galaxies5020022