A two-level method for sparse time-frequency representation of multiscale data

Based on the recently developed data-driven time-frequency analysis (Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we first run a local algorithm to get a good approximation of the instantaneous freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2017-10, Vol.60 (10), p.1733-1752
Hauptverfasser: Liu, ChunGuang, Shi, ZuoQiang, Hou, Thomas Yizhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the recently developed data-driven time-frequency analysis (Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we first run a local algorithm to get a good approximation of the instantaneous frequency. We then pass this instantaneous frequency to the global algorithm to get an accurate global intrinsic mode function (IMF) and instantaneous frequency. The two-level method alleviates the difficulty of the mode mixing to some extent. We also present a method to reduce the end effects.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-016-9088-9