Multi-view learning via multiple graph regularized generative model

Topic models, such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA), have shown impressive success in many fields. Recently, multi-view learning via probabilistic latent semantic analysis (MVPLSA), is also designed for multi-view topic modeling. These approaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2017-04, Vol.121, p.153-162
Hauptverfasser: Wang, Shaokai, Wang, Eric Ke, Li, Xutao, Ye, Yunming, Lau, Raymond Y.K., Du, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topic models, such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA), have shown impressive success in many fields. Recently, multi-view learning via probabilistic latent semantic analysis (MVPLSA), is also designed for multi-view topic modeling. These approaches are instances of generative model, whereas they all ignore the manifold structure of data distribution, which is generally useful for preserving the nonlinear information. In this paper, we propose a novel multiple graph regularized generative model to exploit the manifold structure in multiple views. Specifically, we construct a nearest neighbor graph for each view to encode its corresponding manifold information. A multiple graph ensemble regularization framework is proposed to learn the optimal intrinsic manifold. Then, the manifold regularization term is incorporated into a multi-view topic model, resulting in a unified objective function. The solutions are derived based on the Expectation Maximization optimization framework. Experimental results on real-world multi-view data sets demonstrate the effectiveness of our approach.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2017.01.022