Categorical equivalence and the Ramsey property for finite powers of a primal algebra
In this paper, we investigate the best known and most important example of a categorical equivalence in algebra, that between the variety of boolean algebras and any variety generated by a single primal algebra. We consider this equivalence in the context of Kechris-Pestov-Todorčević correspondence,...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2017-10, Vol.78 (2), p.159-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the best known and most important example of a categorical equivalence in algebra, that between the variety of boolean algebras and any variety generated by a single primal algebra. We consider this equivalence in the context of Kechris-Pestov-Todorčević correspondence, a surprising correspondence between model theory, combinatorics and topological dynamics. We show that relevant combinatorial properties (such as the amalgamation property, Ramsey property and ordering property) carry over from a category to an equivalent category. We then use these results to show that the category whose objects are isomorphic copies of finite powers of a primal algebra
A
together with a particular linear ordering |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-017-0453-0 |