Categorical equivalence and the Ramsey property for finite powers of a primal algebra

In this paper, we investigate the best known and most important example of a categorical equivalence in algebra, that between the variety of boolean algebras and any variety generated by a single primal algebra. We consider this equivalence in the context of Kechris-Pestov-Todorčević correspondence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2017-10, Vol.78 (2), p.159-179
Hauptverfasser: Mašulović, Dragan, Scow, Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the best known and most important example of a categorical equivalence in algebra, that between the variety of boolean algebras and any variety generated by a single primal algebra. We consider this equivalence in the context of Kechris-Pestov-Todorčević correspondence, a surprising correspondence between model theory, combinatorics and topological dynamics. We show that relevant combinatorial properties (such as the amalgamation property, Ramsey property and ordering property) carry over from a category to an equivalent category. We then use these results to show that the category whose objects are isomorphic copies of finite powers of a primal algebra A together with a particular linear ordering
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-017-0453-0