Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films

Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) were prepared by thermal evaporation technique. FTIR-spectra confirmed that the thermal evaporation technique is a suitable technique to obtain the appropriate structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2017-10, Vol.28 (19), p.14252-14257
Hauptverfasser: Qashou, Saleem I., Darwish, A. A. A., Alharbi, S. R., Al Garni, S. E., Hanafy, T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14257
container_issue 19
container_start_page 14252
container_title Journal of materials science. Materials in electronics
container_volume 28
creator Qashou, Saleem I.
Darwish, A. A. A.
Alharbi, S. R.
Al Garni, S. E.
Hanafy, T. A.
description Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) were prepared by thermal evaporation technique. FTIR-spectra confirmed that the thermal evaporation technique is a suitable technique to obtain the appropriate structure of Ch-diisoQ thin films. The complex (real and imaginary parts) permittivity of dielectric demonstrates a noteworthy reliance on the frequency and temperature. The dielectric relaxation behavior is explained in terms of electric modulus formalism. The frequencies identical to the maximum of the imaginary electric modulus at different temperatures were found to comply with an Arrhenius law. The calculated activation energy for this relaxation process is 0.24 eV. The frequency reliance of AC conductivity is found to take after Jonscher’s power law with the relevance of the correlated barrier hopping model.
doi_str_mv 10.1007/s10854-017-7283-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938394535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938394535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c73712e35d811fb7c9d8b8bad3770562d840b7a17025b5582ddd8480690c260d3</originalsourceid><addsrcrecordid>eNp1kd9KHDEUxoO04Nb2AbwLeLPCxObPZJLpnW5btyBIoYVCkTCTZJzImKxJtuze9Zm89ml8kkbXi954cThw-H3fOZwPgEOCTwjG4mMiWPIaYSKQoJKhzR6YES4YqiX99QbMcMsFqjml--BdSjcY46ZmcgYePjs7WZ2j0zDaqdt02QUPVzFomxLsvIGnC6iDN2ud3R-XtzAMkFYtOnMJ_qZoXiM9TiGG1Wj9djq2edxOV0WYx9htClGRAhs7fGoqXhGMzOPfe1tqKHUFjXMp3K2dD5PzFpGKVbJQcE6XVbs8htnmWO6ZL0b0jH4vo9F5OLjpNr0Hb4duSvbDSz8AP79--bFYoovL82-L0wukGWky0oIJQi3jRhIy9EK3Rvay7wwTAvOGGlnjXnREYMp7ziU1powkblqsaYMNOwBHO9_ylru1TVndhHX0ZaUiLZOsrTnjhSI7SseQUrSDWkV328WtIlg9haR2IakSknoKSW2Khu40qbD-2sb_nF8V_QOjlpTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938394535</pqid></control><display><type>article</type><title>Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qashou, Saleem I. ; Darwish, A. A. A. ; Alharbi, S. R. ; Al Garni, S. E. ; Hanafy, T. A.</creator><creatorcontrib>Qashou, Saleem I. ; Darwish, A. A. A. ; Alharbi, S. R. ; Al Garni, S. E. ; Hanafy, T. A.</creatorcontrib><description>Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) were prepared by thermal evaporation technique. FTIR-spectra confirmed that the thermal evaporation technique is a suitable technique to obtain the appropriate structure of Ch-diisoQ thin films. The complex (real and imaginary parts) permittivity of dielectric demonstrates a noteworthy reliance on the frequency and temperature. The dielectric relaxation behavior is explained in terms of electric modulus formalism. The frequencies identical to the maximum of the imaginary electric modulus at different temperatures were found to comply with an Arrhenius law. The calculated activation energy for this relaxation process is 0.24 eV. The frequency reliance of AC conductivity is found to take after Jonscher’s power law with the relevance of the correlated barrier hopping model.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-7283-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anthrax ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dielectric relaxation ; Evaporation ; Hopping conduction ; Materials Science ; Optical and Electronic Materials ; Silicon ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2017-10, Vol.28 (19), p.14252-14257</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c73712e35d811fb7c9d8b8bad3770562d840b7a17025b5582ddd8480690c260d3</citedby><cites>FETCH-LOGICAL-c316t-c73712e35d811fb7c9d8b8bad3770562d840b7a17025b5582ddd8480690c260d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-7283-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-7283-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qashou, Saleem I.</creatorcontrib><creatorcontrib>Darwish, A. A. A.</creatorcontrib><creatorcontrib>Alharbi, S. R.</creatorcontrib><creatorcontrib>Al Garni, S. E.</creatorcontrib><creatorcontrib>Hanafy, T. A.</creatorcontrib><title>Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) were prepared by thermal evaporation technique. FTIR-spectra confirmed that the thermal evaporation technique is a suitable technique to obtain the appropriate structure of Ch-diisoQ thin films. The complex (real and imaginary parts) permittivity of dielectric demonstrates a noteworthy reliance on the frequency and temperature. The dielectric relaxation behavior is explained in terms of electric modulus formalism. The frequencies identical to the maximum of the imaginary electric modulus at different temperatures were found to comply with an Arrhenius law. The calculated activation energy for this relaxation process is 0.24 eV. The frequency reliance of AC conductivity is found to take after Jonscher’s power law with the relevance of the correlated barrier hopping model.</description><subject>Anthrax</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric relaxation</subject><subject>Evaporation</subject><subject>Hopping conduction</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Silicon</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kd9KHDEUxoO04Nb2AbwLeLPCxObPZJLpnW5btyBIoYVCkTCTZJzImKxJtuze9Zm89ml8kkbXi954cThw-H3fOZwPgEOCTwjG4mMiWPIaYSKQoJKhzR6YES4YqiX99QbMcMsFqjml--BdSjcY46ZmcgYePjs7WZ2j0zDaqdt02QUPVzFomxLsvIGnC6iDN2ud3R-XtzAMkFYtOnMJ_qZoXiM9TiGG1Wj9djq2edxOV0WYx9htClGRAhs7fGoqXhGMzOPfe1tqKHUFjXMp3K2dD5PzFpGKVbJQcE6XVbs8htnmWO6ZL0b0jH4vo9F5OLjpNr0Hb4duSvbDSz8AP79--bFYoovL82-L0wukGWky0oIJQi3jRhIy9EK3Rvay7wwTAvOGGlnjXnREYMp7ziU1powkblqsaYMNOwBHO9_ylru1TVndhHX0ZaUiLZOsrTnjhSI7SseQUrSDWkV328WtIlg9haR2IakSknoKSW2Khu40qbD-2sb_nF8V_QOjlpTc</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Qashou, Saleem I.</creator><creator>Darwish, A. A. A.</creator><creator>Alharbi, S. R.</creator><creator>Al Garni, S. E.</creator><creator>Hanafy, T. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171001</creationdate><title>Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films</title><author>Qashou, Saleem I. ; Darwish, A. A. A. ; Alharbi, S. R. ; Al Garni, S. E. ; Hanafy, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c73712e35d811fb7c9d8b8bad3770562d840b7a17025b5582ddd8480690c260d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anthrax</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric relaxation</topic><topic>Evaporation</topic><topic>Hopping conduction</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Silicon</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qashou, Saleem I.</creatorcontrib><creatorcontrib>Darwish, A. A. A.</creatorcontrib><creatorcontrib>Alharbi, S. R.</creatorcontrib><creatorcontrib>Al Garni, S. E.</creatorcontrib><creatorcontrib>Hanafy, T. A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qashou, Saleem I.</au><au>Darwish, A. A. A.</au><au>Alharbi, S. R.</au><au>Al Garni, S. E.</au><au>Hanafy, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>28</volume><issue>19</issue><spage>14252</spage><epage>14257</epage><pages>14252-14257</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) were prepared by thermal evaporation technique. FTIR-spectra confirmed that the thermal evaporation technique is a suitable technique to obtain the appropriate structure of Ch-diisoQ thin films. The complex (real and imaginary parts) permittivity of dielectric demonstrates a noteworthy reliance on the frequency and temperature. The dielectric relaxation behavior is explained in terms of electric modulus formalism. The frequencies identical to the maximum of the imaginary electric modulus at different temperatures were found to comply with an Arrhenius law. The calculated activation energy for this relaxation process is 0.24 eV. The frequency reliance of AC conductivity is found to take after Jonscher’s power law with the relevance of the correlated barrier hopping model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-7283-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2017-10, Vol.28 (19), p.14252-14257
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1938394535
source SpringerLink Journals - AutoHoldings
subjects Anthrax
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dielectric relaxation
Evaporation
Hopping conduction
Materials Science
Optical and Electronic Materials
Silicon
Thin films
title Dielectric relaxation process and AC conductivity of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20relaxation%20process%20and%20AC%20conductivity%20of%202,9-Bis%20%5B2-(4-chlorophenyl)ethyl%5D%20anthrax%20%5B2,1,9-def:6,5,10-d%E2%80%B2e%E2%80%B2f%E2%80%B2%5D%20diisoquinoline-1,3,8,10%20(2H,9H)%20tetron%20(Ch-diisoQ)%20thin%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Qashou,%20Saleem%20I.&rft.date=2017-10-01&rft.volume=28&rft.issue=19&rft.spage=14252&rft.epage=14257&rft.pages=14252-14257&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-7283-x&rft_dat=%3Cproquest_cross%3E1938394535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938394535&rft_id=info:pmid/&rfr_iscdi=true