Linear stability of delayed reaction–diffusion systems

A common feature of pattern formation in both space and time is the destabilization of a stable equilibrium solution of an ordinary differential equation by adding diffusion or delay, or both. Here we study linear stability of general reaction–diffusion systems with off-diagonal time delays. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-01, Vol.73 (2), p.226-232
Hauptverfasser: Hinow, Peter, Mincheva, Maya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common feature of pattern formation in both space and time is the destabilization of a stable equilibrium solution of an ordinary differential equation by adding diffusion or delay, or both. Here we study linear stability of general reaction–diffusion systems with off-diagonal time delays. We show that a delay-stable system cannot be destabilized by diffusion, and that a diffusion stable system is also stable with respect to delay, if the diffusion is sufficiently fast. A system with direct negative feedback which is strongly stable with respect to diffusion can be destabilized by off-diagonal delay.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2016.11.006