Honey authentication based on physicochemical parameters and phenolic compounds
•The honeys analysed were authenticated using physicochemical parameters and phenolics.•The physicochemical parameters and phenolics have been evaluated for the 51 honey samples.•Honey classification has been made PCA, LDA and ANN. The aim of this study is to assess the usefulness of physicochemical...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2017-06, Vol.138, p.148-156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •The honeys analysed were authenticated using physicochemical parameters and phenolics.•The physicochemical parameters and phenolics have been evaluated for the 51 honey samples.•Honey classification has been made PCA, LDA and ANN.
The aim of this study is to assess the usefulness of physicochemical parameters (pH, water activity, free acidity, refraction index, Brix, moisture content and ash content), color parameters (L∗, a∗, b∗, chroma, hue angle and yellow index) and phenolics (quercetin, apigenin, myricetin, isorhamnetin, kaempherol, caffeic acid, chrysin, galangin, luteolin, p-coumaric acid, gallic acid and pinocembrin) in view of classifying honeys according to their botanical origin (acacia, tilia, sunflower, honeydew and polyfloral). Thus, the classification of honeys has been made using the principal component analysis (PCA), linear discriminant analysis (LDA) and artificial neural networks (ANN). The multilayer perceptron network with 2 hidden layers classified correctly 94.8% of the cross validated samples. |
---|---|
ISSN: | 0168-1699 1872-7107 |
DOI: | 10.1016/j.compag.2017.04.020 |