Finite groups with SS-supplement

Let G be a finite group. A subgroup H of G is said to be SS -quasinormal in G if there is a subgroup K such that G = H K and H S = S H , for all S ∈ Syl( K ), where Syl( K ) denotes the collection of all Sylow subgroups of K . A subgroup H of G is said to be SS -supplemented in G if there is a subgr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2017-10, Vol.184 (2), p.325-333
Hauptverfasser: Yan, Quanfu, Bao, Xiaoxi, Shen, Zhencai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group. A subgroup H of G is said to be SS -quasinormal in G if there is a subgroup K such that G = H K and H S = S H , for all S ∈ Syl( K ), where Syl( K ) denotes the collection of all Sylow subgroups of K . A subgroup H of G is said to be SS -supplemented in G if there is a subgroup K such that G = H K and H ∩ K is SS -quasinormal in G . In this paper, we investigate the SS -supplemented subgroups and strengthen a result of Skiba which gives a positive answer to an open question of Shemetkov.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-016-1011-0