Finite groups with SS-supplement
Let G be a finite group. A subgroup H of G is said to be SS -quasinormal in G if there is a subgroup K such that G = H K and H S = S H , for all S ∈ Syl( K ), where Syl( K ) denotes the collection of all Sylow subgroups of K . A subgroup H of G is said to be SS -supplemented in G if there is a subgr...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2017-10, Vol.184 (2), p.325-333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a finite group. A subgroup
H
of
G
is said to be
SS
-quasinormal in
G
if there is a subgroup
K
such that
G
=
H
K
and
H
S
=
S
H
, for all
S
∈
Syl(
K
), where Syl(
K
) denotes the collection of all Sylow subgroups of
K
. A subgroup
H
of
G
is said to be
SS
-supplemented in
G
if there is a subgroup
K
such that
G
=
H
K
and
H
∩
K
is
SS
-quasinormal in
G
. In this paper, we investigate the
SS
-supplemented subgroups and strengthen a result of Skiba which gives a positive answer to an open question of Shemetkov. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-016-1011-0 |