Randomized matrix-free trace and log-determinant estimators

We present randomized algorithms for estimating the trace and determinant of Hermitian positive semi-definite matrices. The algorithms are based on subspace iteration, and access the matrix only through matrix vector products. We analyse the error due to randomization, for starting guesses whose ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2017-10, Vol.137 (2), p.353-395
Hauptverfasser: Saibaba, Arvind K., Alexanderian, Alen, Ipsen, Ilse C. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present randomized algorithms for estimating the trace and determinant of Hermitian positive semi-definite matrices. The algorithms are based on subspace iteration, and access the matrix only through matrix vector products. We analyse the error due to randomization, for starting guesses whose elements are Gaussian or Rademacher random variables. The analysis is cleanly separated into a structural (deterministic) part followed by a probabilistic part. Our absolute bounds for the expectation and concentration of the estimators are non-asymptotic and informative even for matrices of low dimension. For the trace estimators, we also present asymptotic bounds on the number of samples (columns of the starting guess) required to achieve a user-specified relative error. Numerical experiments illustrate the performance of the estimators and the tightness of the bounds on low-dimensional matrices, and on a challenging application in uncertainty quantification arising from Bayesian optimal experimental design.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-017-0880-z