Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking

Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-09, Vol.27 (34), p.n/a
Hauptverfasser: Zhang, Kunyu, Feng, Qian, Xu, Jianbin, Xu, Xiayi, Tian, Feng, Yeung, Kelvin W. K., Bian, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Advanced functional materials
container_volume 27
creator Zhang, Kunyu
Feng, Qian
Xu, Jianbin
Xu, Xiayi
Tian, Feng
Yeung, Kelvin W. K.
Bian, Liming
description Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis. A self‐assembled nanocomposite hydrogel is fabricated by the effective and dynamic coordination between bisphosphonate and Mg2+. This hydrogel exhibits enhanced mechanical properties, excellent injectability, and self‐healing characteristics. The photopolymerization of the acrylate groups on the surface of Ac‐BP‐Mg nanoparticles can further increase the crosslinking of the hydrogels, and hence regulate the spreading and osteogenesis of the encapsulated human mesenchymal stem cells.
doi_str_mv 10.1002/adfm.201701642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937409790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937409790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4202-66a95c29e933af9fd072d96d13fb102cd9453233f86d81b4c6d0c79b7e2d24023</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhU1oIGnSbdeCbFLCTPXj2KPlxJM_yLTQtNCdkaUrRxNZciQ7ZbrKI_SN8i59kmoyJV12IXThfOeeCyfL3hM8JRjTj0LpbkoxKTEpcrqT7ZOCFBOG6ezN60y-72VvY1zhhJUs38-eb8Hq30-_5jFC11hQ6NqtQA4izeiTcF76rvfRDICu1ir4FmxEt0k21vxMdLNGZyb2d37znBgg7VqK1kE0Y4eOly09-YAq74MySTXeoS_QjjaBEQ13gBZGawjgBrNVvUbnToo-vjAqRUGHKrAp9dEItBiFRVXwMVrj7o1rD7NdLWyEd3__g-zbxfnX6mpy8_nyuprfTGROMZ0UheCnknLgjAnNtcIlVbxQhOmGYCoVz08ZZUzPCjUjTS4LhWXJmxKoojmm7CA72u7tg38YIQ71yo_BpciacFbmmJccJ2q6peTmxAC67oPpRFjXBNebkupNSfVrScnAt4YfxsL6P3Q9X1ws_3n_AF1zm8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937409790</pqid></control><display><type>article</type><title>Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Kunyu ; Feng, Qian ; Xu, Jianbin ; Xu, Xiayi ; Tian, Feng ; Yeung, Kelvin W. K. ; Bian, Liming</creator><creatorcontrib>Zhang, Kunyu ; Feng, Qian ; Xu, Jianbin ; Xu, Xiayi ; Tian, Feng ; Yeung, Kelvin W. K. ; Bian, Liming</creatorcontrib><description>Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis. A self‐assembled nanocomposite hydrogel is fabricated by the effective and dynamic coordination between bisphosphonate and Mg2+. This hydrogel exhibits enhanced mechanical properties, excellent injectability, and self‐healing characteristics. The photopolymerization of the acrylate groups on the surface of Ac‐BP‐Mg nanoparticles can further increase the crosslinking of the hydrogels, and hence regulate the spreading and osteogenesis of the encapsulated human mesenchymal stem cells.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201701642</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; Crosslinking ; Differentiation ; dynamic coordination ; Encapsulation ; Hydrogels ; Magnesium ; Materials science ; Mechanical properties ; nanocomposite hydrogels ; Nanocomposites ; Nanoparticles ; Polymers ; Prefabrication ; Self-assembly ; stem cell differentiation ; Stem cells ; Stiffness ; Viability</subject><ispartof>Advanced functional materials, 2017-09, Vol.27 (34), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4202-66a95c29e933af9fd072d96d13fb102cd9453233f86d81b4c6d0c79b7e2d24023</citedby><cites>FETCH-LOGICAL-c4202-66a95c29e933af9fd072d96d13fb102cd9453233f86d81b4c6d0c79b7e2d24023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201701642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201701642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Kunyu</creatorcontrib><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Xu, Xiayi</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Yeung, Kelvin W. K.</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><title>Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking</title><title>Advanced functional materials</title><description>Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis. A self‐assembled nanocomposite hydrogel is fabricated by the effective and dynamic coordination between bisphosphonate and Mg2+. This hydrogel exhibits enhanced mechanical properties, excellent injectability, and self‐healing characteristics. The photopolymerization of the acrylate groups on the surface of Ac‐BP‐Mg nanoparticles can further increase the crosslinking of the hydrogels, and hence regulate the spreading and osteogenesis of the encapsulated human mesenchymal stem cells.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Crosslinking</subject><subject>Differentiation</subject><subject>dynamic coordination</subject><subject>Encapsulation</subject><subject>Hydrogels</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>nanocomposite hydrogels</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Prefabrication</subject><subject>Self-assembly</subject><subject>stem cell differentiation</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Viability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhU1oIGnSbdeCbFLCTPXj2KPlxJM_yLTQtNCdkaUrRxNZciQ7ZbrKI_SN8i59kmoyJV12IXThfOeeCyfL3hM8JRjTj0LpbkoxKTEpcrqT7ZOCFBOG6ezN60y-72VvY1zhhJUs38-eb8Hq30-_5jFC11hQ6NqtQA4izeiTcF76rvfRDICu1ir4FmxEt0k21vxMdLNGZyb2d37znBgg7VqK1kE0Y4eOly09-YAq74MySTXeoS_QjjaBEQ13gBZGawjgBrNVvUbnToo-vjAqRUGHKrAp9dEItBiFRVXwMVrj7o1rD7NdLWyEd3__g-zbxfnX6mpy8_nyuprfTGROMZ0UheCnknLgjAnNtcIlVbxQhOmGYCoVz08ZZUzPCjUjTS4LhWXJmxKoojmm7CA72u7tg38YIQ71yo_BpciacFbmmJccJ2q6peTmxAC67oPpRFjXBNebkupNSfVrScnAt4YfxsL6P3Q9X1ws_3n_AF1zm8M</recordid><startdate>20170913</startdate><enddate>20170913</enddate><creator>Zhang, Kunyu</creator><creator>Feng, Qian</creator><creator>Xu, Jianbin</creator><creator>Xu, Xiayi</creator><creator>Tian, Feng</creator><creator>Yeung, Kelvin W. K.</creator><creator>Bian, Liming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170913</creationdate><title>Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking</title><author>Zhang, Kunyu ; Feng, Qian ; Xu, Jianbin ; Xu, Xiayi ; Tian, Feng ; Yeung, Kelvin W. K. ; Bian, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4202-66a95c29e933af9fd072d96d13fb102cd9453233f86d81b4c6d0c79b7e2d24023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Crosslinking</topic><topic>Differentiation</topic><topic>dynamic coordination</topic><topic>Encapsulation</topic><topic>Hydrogels</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>nanocomposite hydrogels</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Prefabrication</topic><topic>Self-assembly</topic><topic>stem cell differentiation</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kunyu</creatorcontrib><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Xu, Xiayi</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Yeung, Kelvin W. K.</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kunyu</au><au>Feng, Qian</au><au>Xu, Jianbin</au><au>Xu, Xiayi</au><au>Tian, Feng</au><au>Yeung, Kelvin W. K.</au><au>Bian, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking</atitle><jtitle>Advanced functional materials</jtitle><date>2017-09-13</date><risdate>2017</risdate><volume>27</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis. A self‐assembled nanocomposite hydrogel is fabricated by the effective and dynamic coordination between bisphosphonate and Mg2+. This hydrogel exhibits enhanced mechanical properties, excellent injectability, and self‐healing characteristics. The photopolymerization of the acrylate groups on the surface of Ac‐BP‐Mg nanoparticles can further increase the crosslinking of the hydrogels, and hence regulate the spreading and osteogenesis of the encapsulated human mesenchymal stem cells.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201701642</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-09, Vol.27 (34), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1937409790
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biomedical materials
Crosslinking
Differentiation
dynamic coordination
Encapsulation
Hydrogels
Magnesium
Materials science
Mechanical properties
nanocomposite hydrogels
Nanocomposites
Nanoparticles
Polymers
Prefabrication
Self-assembly
stem cell differentiation
Stem cells
Stiffness
Viability
title Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20Injectable%20Nanocomposite%20Hydrogels%20Stabilized%20by%20Bisphosphonate%E2%80%90Magnesium%20(Mg2+)%20Coordination%20Regulates%20the%20Differentiation%20of%20Encapsulated%20Stem%20Cells%20via%20Dual%20Crosslinking&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Kunyu&rft.date=2017-09-13&rft.volume=27&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201701642&rft_dat=%3Cproquest_cross%3E1937409790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937409790&rft_id=info:pmid/&rfr_iscdi=true