Self‐Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate‐Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking

Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-09, Vol.27 (34), p.n/a
Hauptverfasser: Zhang, Kunyu, Feng, Qian, Xu, Jianbin, Xu, Xiayi, Tian, Feng, Yeung, Kelvin W. K., Bian, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis. A self‐assembled nanocomposite hydrogel is fabricated by the effective and dynamic coordination between bisphosphonate and Mg2+. This hydrogel exhibits enhanced mechanical properties, excellent injectability, and self‐healing characteristics. The photopolymerization of the acrylate groups on the surface of Ac‐BP‐Mg nanoparticles can further increase the crosslinking of the hydrogels, and hence regulate the spreading and osteogenesis of the encapsulated human mesenchymal stem cells.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201701642