Complete minimal submanifolds with nullity in Euclidean space
In this paper, we investigate minimal submanifolds in Euclidean space with positive index of relative nullity. Let M m be a complete Riemannian manifold and let f : M m → R n be a minimal isometric immersion with index of relative nullity at least m - 2 at any point. We show that if the Omori–Yau ma...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-10, Vol.287 (1-2), p.481-491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate minimal submanifolds in Euclidean space with positive index of relative nullity. Let
M
m
be a complete Riemannian manifold and let
f
:
M
m
→
R
n
be a minimal isometric immersion with index of relative nullity at least
m
-
2
at any point. We show that if the Omori–Yau maximum principle for the Laplacian holds on
M
m
, for instance, if the scalar curvature of
M
m
does not decrease to
-
∞
too fast or if the immersion
f
is proper, then the submanifold must be a cylinder over a minimal surface. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1833-4 |