Complete minimal submanifolds with nullity in Euclidean space

In this paper, we investigate minimal submanifolds in Euclidean space with positive index of relative nullity. Let M m be a complete Riemannian manifold and let f : M m → R n be a minimal isometric immersion with index of relative nullity at least m - 2 at any point. We show that if the Omori–Yau ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2017-10, Vol.287 (1-2), p.481-491
Hauptverfasser: Dajczer, Marcos, Kasioumis, Theodoros, Savas-Halilaj, Andreas, Vlachos, Theodoros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate minimal submanifolds in Euclidean space with positive index of relative nullity. Let M m be a complete Riemannian manifold and let f : M m → R n be a minimal isometric immersion with index of relative nullity at least m - 2 at any point. We show that if the Omori–Yau maximum principle for the Laplacian holds on M m , for instance, if the scalar curvature of M m does not decrease to - ∞ too fast or if the immersion f is proper, then the submanifold must be a cylinder over a minimal surface.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1833-4