Invariants of finite groups generated by generalized transvections in the modular case

We investigate the invariant rings of two classes of finite groups G ≤ GL( n , F q ) which are generated by a number of generalized transvections with an invariant subspace H over a finite field F q in the modular case. We name these groups generalized transvection groups. One class is concerned wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2017-09, Vol.67 (3), p.655-698
Hauptverfasser: Han, Xiang, Nan, Jizhu, Gupta, Chander K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the invariant rings of two classes of finite groups G ≤ GL( n , F q ) which are generated by a number of generalized transvections with an invariant subspace H over a finite field F q in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2017.0044-16