Solution of a stochastic Darcy equation by polynomial chaos expansion

This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications 2017-07, Vol.10 (3), p.259-271
Hauptverfasser: Shalimova, I. A., Sabelfeld, K. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 3
container_start_page 259
container_title Numerical analysis and applications
container_volume 10
creator Shalimova, I. A.
Sabelfeld, K. K.
description This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.
doi_str_mv 10.1134/S1995423917030077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936583715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936583715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a72df890b02554e8e71a42234c5e6fce5997c0112dd51982d20c54ffb1935c513</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz-Wiao6zrByx4WD2XNE20S7fpJi3Yf2_WFRHEucww7_O-A4PQJZBrAMZvNqCU4JQpkIQRIuUJmh1WGadcnv7MTJ2jRYxbkopRWfB8hlYb345D4zvsHdY4Dt686zg0Bt_pYCZs96P-kqsJ976dOr9rdIsT5CO2H73uYlIv0JnTbbSL7z5Hr_erl-Vjtn5-eFrerjPDIB8yLWntCkUqQoXgtrASNKeUcSNs7owVSklDAGhdC1AFrSkxgjtXgWLCCGBzdHXM7YPfjzYO5daPoUsny4TkomASRKLgSJngYwzWlX1odjpMJZDy8LDyz8OShx49MbHdmw2_kv81fQIESGuL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936583715</pqid></control><display><type>article</type><title>Solution of a stochastic Darcy equation by polynomial chaos expansion</title><source>Springer Nature - Complete Springer Journals</source><creator>Shalimova, I. A. ; Sabelfeld, K. K.</creator><creatorcontrib>Shalimova, I. A. ; Sabelfeld, K. K.</creatorcontrib><description>This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S1995423917030077</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Collocation methods ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Numerical Analysis ; Polynomials ; Probabilistic methods ; Probability theory ; Simulation ; Thermal expansion</subject><ispartof>Numerical analysis and applications, 2017-07, Vol.10 (3), p.259-271</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a72df890b02554e8e71a42234c5e6fce5997c0112dd51982d20c54ffb1935c513</citedby><cites>FETCH-LOGICAL-c316t-a72df890b02554e8e71a42234c5e6fce5997c0112dd51982d20c54ffb1935c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995423917030077$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995423917030077$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shalimova, I. A.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><title>Solution of a stochastic Darcy equation by polynomial chaos expansion</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.</description><subject>Boundary value problems</subject><subject>Collocation methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Simulation</subject><subject>Thermal expansion</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz-Wiao6zrByx4WD2XNE20S7fpJi3Yf2_WFRHEucww7_O-A4PQJZBrAMZvNqCU4JQpkIQRIuUJmh1WGadcnv7MTJ2jRYxbkopRWfB8hlYb345D4zvsHdY4Dt686zg0Bt_pYCZs96P-kqsJ976dOr9rdIsT5CO2H73uYlIv0JnTbbSL7z5Hr_erl-Vjtn5-eFrerjPDIB8yLWntCkUqQoXgtrASNKeUcSNs7owVSklDAGhdC1AFrSkxgjtXgWLCCGBzdHXM7YPfjzYO5daPoUsny4TkomASRKLgSJngYwzWlX1odjpMJZDy8LDyz8OShx49MbHdmw2_kv81fQIESGuL</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Shalimova, I. A.</creator><creator>Sabelfeld, K. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Solution of a stochastic Darcy equation by polynomial chaos expansion</title><author>Shalimova, I. A. ; Sabelfeld, K. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a72df890b02554e8e71a42234c5e6fce5997c0112dd51982d20c54ffb1935c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>Collocation methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Simulation</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shalimova, I. A.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalimova, I. A.</au><au>Sabelfeld, K. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of a stochastic Darcy equation by polynomial chaos expansion</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>10</volume><issue>3</issue><spage>259</spage><epage>271</epage><pages>259-271</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995423917030077</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-4239
ispartof Numerical analysis and applications, 2017-07, Vol.10 (3), p.259-271
issn 1995-4239
1995-4247
language eng
recordid cdi_proquest_journals_1936583715
source Springer Nature - Complete Springer Journals
subjects Boundary value problems
Collocation methods
Mathematical analysis
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Numerical Analysis
Polynomials
Probabilistic methods
Probability theory
Simulation
Thermal expansion
title Solution of a stochastic Darcy equation by polynomial chaos expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20a%20stochastic%20Darcy%20equation%20by%20polynomial%20chaos%20expansion&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Shalimova,%20I.%20A.&rft.date=2017-07-01&rft.volume=10&rft.issue=3&rft.spage=259&rft.epage=271&rft.pages=259-271&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S1995423917030077&rft_dat=%3Cproquest_cross%3E1936583715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936583715&rft_id=info:pmid/&rfr_iscdi=true