Solution of a stochastic Darcy equation by polynomial chaos expansion

This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications 2017-07, Vol.10 (3), p.259-271
Hauptverfasser: Shalimova, I. A., Sabelfeld, K. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.
ISSN:1995-4239
1995-4247
DOI:10.1134/S1995423917030077