Oscillation Revisited

In previous joint work by G. Beer and S. Levi, the authors studied the oscillation Ω( f , A ) of a function f between metric spaces 〈 X , d 〉 and 〈 Y , ρ 〉 at a nonempty subset A of X , defined so that when A = { x }, we get Ω( f ,{ x }) = ω ( f , x ), where ω ( f , x ) denotes the classical notion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2017-09, Vol.25 (3), p.603-616
Hauptverfasser: Beer, Gerald, Cao, Jiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In previous joint work by G. Beer and S. Levi, the authors studied the oscillation Ω( f , A ) of a function f between metric spaces 〈 X , d 〉 and 〈 Y , ρ 〉 at a nonempty subset A of X , defined so that when A = { x }, we get Ω( f ,{ x }) = ω ( f , x ), where ω ( f , x ) denotes the classical notion of oscillation of f at the point x ∈ X . The main purpose of this article is to formulate a general joint continuity result for ( f , A )↦Ω( f , A ) valid for continuous functions.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-017-0425-8