On the periodicity of continued fractions in elliptic fields

Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2017-07, Vol.96 (1), p.332-335
Hauptverfasser: Platonov, V. P., Fedorov, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 1
container_start_page 332
container_title Doklady. Mathematics
container_volume 96
creator Platonov, V. P.
Fedorov, G. V.
description Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1 ) , where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ( h )( f ) in the case deg f = 3.
doi_str_mv 10.1134/S1064562417040068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935920617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935920617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-acbf552591930b85861718188663f136fc68a24bbcc0d5db35bab7f8adf5a8643</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9WhuXk3BjRRfUOhCXQ9JJtGUMTMmmUX_vSl1IYire-Cc8104CF0CuQZg_OYFiORCUg4LwgmR6gjNQDBoFJP0uOpqN3v_FJ3lvCWEC0rIDN1uIi4fDo8uhaELNpQdHjy2QywhTq7DPmlbwhAzDhG7vg9jCRb74Poun6MTr_vsLn7uHL093L-unpr15vF5dbduLANZGm2NF4KKJSwZMUooCQtQoJSUzAOT3kqlKTfGWtKJzjBhtFl4pTsvtJKczdHVgTum4WtyubTbYUqxvmwrUiwpqcSagkPKpiHn5Hw7pvCp064F0u5Hav-MVDv00Mk1G99d-kX-t_QNWvhnmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935920617</pqid></control><display><type>article</type><title>On the periodicity of continued fractions in elliptic fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Platonov, V. P. ; Fedorov, G. V.</creator><creatorcontrib>Platonov, V. P. ; Fedorov, G. V.</creatorcontrib><description>Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1 ) , where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ( h )( f ) in the case deg f = 3.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562417040068</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2017-07, Vol.96 (1), p.332-335</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-acbf552591930b85861718188663f136fc68a24bbcc0d5db35bab7f8adf5a8643</citedby><cites>FETCH-LOGICAL-c316t-acbf552591930b85861718188663f136fc68a24bbcc0d5db35bab7f8adf5a8643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562417040068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562417040068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Platonov, V. P.</creatorcontrib><creatorcontrib>Fedorov, G. V.</creatorcontrib><title>On the periodicity of continued fractions in elliptic fields</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1 ) , where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ( h )( f ) in the case deg f = 3.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9WhuXk3BjRRfUOhCXQ9JJtGUMTMmmUX_vSl1IYire-Cc8104CF0CuQZg_OYFiORCUg4LwgmR6gjNQDBoFJP0uOpqN3v_FJ3lvCWEC0rIDN1uIi4fDo8uhaELNpQdHjy2QywhTq7DPmlbwhAzDhG7vg9jCRb74Poun6MTr_vsLn7uHL093L-unpr15vF5dbduLANZGm2NF4KKJSwZMUooCQtQoJSUzAOT3kqlKTfGWtKJzjBhtFl4pTsvtJKczdHVgTum4WtyubTbYUqxvmwrUiwpqcSagkPKpiHn5Hw7pvCp064F0u5Hav-MVDv00Mk1G99d-kX-t_QNWvhnmw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Platonov, V. P.</creator><creator>Fedorov, G. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>On the periodicity of continued fractions in elliptic fields</title><author>Platonov, V. P. ; Fedorov, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-acbf552591930b85861718188663f136fc68a24bbcc0d5db35bab7f8adf5a8643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platonov, V. P.</creatorcontrib><creatorcontrib>Fedorov, G. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platonov, V. P.</au><au>Fedorov, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the periodicity of continued fractions in elliptic fields</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>96</volume><issue>1</issue><spage>332</spage><epage>335</epage><pages>332-335</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1 ) , where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ( h )( f ) in the case deg f = 3.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562417040068</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2017-07, Vol.96 (1), p.332-335
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_1935920617
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title On the periodicity of continued fractions in elliptic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20periodicity%20of%20continued%20fractions%20in%20elliptic%20fields&rft.jtitle=Doklady.%20Mathematics&rft.au=Platonov,%20V.%20P.&rft.date=2017-07-01&rft.volume=96&rft.issue=1&rft.spage=332&rft.epage=335&rft.pages=332-335&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562417040068&rft_dat=%3Cproquest_cross%3E1935920617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935920617&rft_id=info:pmid/&rfr_iscdi=true