On the periodicity of continued fractions in elliptic fields

Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2017-07, Vol.96 (1), p.332-335
Hauptverfasser: Platonov, V. P., Fedorov, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[ h ] of fixed degree for which f has periodic continued fraction expansion in the field ℚ(( h )) and the fields ℚ( h )( f ) are not isomorphic to one another and to fields of the form ℚ( h ) ( c h n + 1 ) , where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ( h )( f ) in the case deg f = 3.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562417040068