On the number of edges in a uniform hypergraph with a range of permitted intersections

The paper studies the quantity p ( n , k , t 1 , t 2 ) equal to the maximum number of edges in a k -uniform hypergraph with the property that the size of the intersection of any two edges lies in the interval [ t 1 , t 2 ]. Previously known upper and lower bounds are given. New bounds for p ( n , k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2017-07, Vol.96 (1), p.354-357
Hauptverfasser: Bobu, A. V., Kupriyanov, A. E., Raigorodskii, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper studies the quantity p ( n , k , t 1 , t 2 ) equal to the maximum number of edges in a k -uniform hypergraph with the property that the size of the intersection of any two edges lies in the interval [ t 1 , t 2 ]. Previously known upper and lower bounds are given. New bounds for p ( n , k , t 1 , t 2 ) are obtained, and the relationship between these bounds and known estimates is studied. For some parameter values, the exact values of p ( n , k , t 1 , t 2 ) are explicitly calculated.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562417040160