On the number of edges in a uniform hypergraph with a range of permitted intersections
The paper studies the quantity p ( n , k , t 1 , t 2 ) equal to the maximum number of edges in a k -uniform hypergraph with the property that the size of the intersection of any two edges lies in the interval [ t 1 , t 2 ]. Previously known upper and lower bounds are given. New bounds for p ( n , k...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2017-07, Vol.96 (1), p.354-357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper studies the quantity
p
(
n
,
k
,
t
1
,
t
2
) equal to the maximum number of edges in a
k
-uniform hypergraph with the property that the size of the intersection of any two edges lies in the interval [
t
1
,
t
2
]. Previously known upper and lower bounds are given. New bounds for
p
(
n
,
k
,
t
1
,
t
2
) are obtained, and the relationship between these bounds and known estimates is studied. For some parameter values, the exact values of
p
(
n
,
k
,
t
1
,
t
2
) are explicitly calculated. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562417040160 |