Perovskites as Precursors for Ni/La2O3 Catalysts in the Dry Reforming of Methane: Synthesis by Constant pH Co‐Precipitation, Reduction Mechanism and Effect of Ru‐Doping

LaNiO3 perovskite is an interesting precursor for Ni/La2O3 catalysts for the dry reforming of methane at high temperatures. Precursors have been synthesized by co‐precipitation without, with 2.5 at %, and with 5 at % Ru doping. The presence of Ru leads to a stabilization of the perovskite structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für anorganische und allgemeine Chemie (1950) 2017-09, Vol.643 (16), p.1088-1095
Hauptverfasser: Kühl, Stefanie, Düdder, Hendrik, Girgsdies, Frank, Kähler, Kevin, Muhler, Martin, Behrens, Malte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LaNiO3 perovskite is an interesting precursor for Ni/La2O3 catalysts for the dry reforming of methane at high temperatures. Precursors have been synthesized by co‐precipitation without, with 2.5 at %, and with 5 at % Ru doping. The presence of Ru leads to a stabilization of the perovskite structure and hinders the decomposition into NiO and Ruddlesden‐Popper mixed oxides Lan+1NinO3n+1, which was observed for the Ru‐free sample upon calcination at 1000 °C (n = 3). Upon reduction in hydrogen, a mechanism involving at least two steps was observed and the first major step was identified as the partial reduction of the precursor leading to a LaNiO2.5‐like intermediate. The second major step is the reduction to Ni metal supported on La2O3 independent of the Ru content of the catalyst. In the presence of Ru, indications for Ni‐Ru alloy formation and for a higher dispersion of the metallic phase were found. The catalytic activity in DRM of the catalyst containing 2.5 % Ru was superior to the catalysts with more or without Ru. Furthermore, the propensity of coke formation was reduced by the presence of Ru.
ISSN:0044-2313
1521-3749
DOI:10.1002/zaac.201700141