Relaxation of contact pressure and self-loosening in dynamic bolted joints

Bolted joints are widely used in a variety of engineering applications where they are dynamically loaded with frequencies of vibration spread over a wide spectrum with the same general effects. When under dynamic loading, bolted joints can become loose due to a loss in clamping pressure in the joint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2017-09, Vol.231 (18), p.3462-3475
Hauptverfasser: Stephen, JT, Marshall, MB, Lewis, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bolted joints are widely used in a variety of engineering applications where they are dynamically loaded with frequencies of vibration spread over a wide spectrum with the same general effects. When under dynamic loading, bolted joints can become loose due to a loss in clamping pressure in the joints. This vibrational loosening sometimes can cause serious problems, and in some cases can lead to fatal consequences if it remains undetected. Non-intrusive ultrasonic and image processing techniques were simultaneously used to investigate the relaxation of contact pressure and loosening of bolted joints subjected to cyclic shear loading. Three critical areas, the contact interface of the bolted component, the bolt length and the rotation of the bolt head, were monitored during loosening of the joints. The results show that loosening of bolted joints can be grouped into three stages: very rapid, rapid, and gradual loosening. The earliest stage of the loosening of bolted joints is characterised by cyclic strain ratcheting–loosening of the bolted joint during vibration without rotation of the bolt head. The higher the rate of relaxation at this early stage, the lower is the resistance of the bolted joint to vibration-induced loosening. Both the dynamic shear load and an additional constant shear load in another direction were observed to affect the rate of loosening, and at this early stage, a rise in the magnitude of the additional constant shear load increases the rate of loosening. Furthermore, the contact pressure distribution affects the rate of loosening at the bolted joint interface, as loosening increases away from area of high contact pressure.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406216645130