Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S c o n d as a function of measurement angle θ ∈ [ 0 , π / 2 ] . Numerical calculations show that the function S c o n d ( θ ) for X states can have at most one local extremum in the open inter...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2017-10, Vol.16 (10), p.1-23, Article 249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy
S
c
o
n
d
as a function of measurement angle
θ
∈
[
0
,
π
/
2
]
. Numerical calculations show that the function
S
c
o
n
d
(
θ
)
for X states can have at most one local extremum in the open interval from zero to
π
/
2
(unimodality property). If the extremum is a minimum, the quantum discord displays region with variable (state-dependent) optimal measurement angle
θ
∗
. Such
θ
-regions (phases, fractions) are very tiny in the space of X-state parameters. We also discover the cases when the conditional entropy has a local
maximum
inside the interval
(
0
,
π
/
2
)
. It is remarkable that the maxima exist in surprisingly wide regions, and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-017-1701-0 |