MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway appears to be a key regulator in cervical carcinogenesis. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is principally involved in the homeostatic maintenance of PI3K/Akt signaling and PTEN has been identified to...
Gespeichert in:
Veröffentlicht in: | Oncology reports 2015-05, Vol.33 (5), p.2393-2401 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway appears to be a key regulator in cervical carcinogenesis. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is principally involved in the homeostatic maintenance of PI3K/Akt signaling and PTEN has been identified to play an important role in the occurrence and development of cervical cancer. MicroRNA (miRNA)-494 has been proven to be involved in the carcinogenesis and development of various types of cancer by directly targeting PTEN. However the role, mechanism and clinical significance of miR-494 in cervical cancer have not been further reported. In the present study, we analyzed the expression of miR-494 in cervical cancer cell lines and clinical specimens by RT-qPCR, and explored the association of miR-494 with PTEN expression and clinicopathological data of cervical cancer patients. The results showed that miR-494 expression was significantly upregulated in human cervical cancer cell lines and tissues. miR-494 upregulation was significantly associated with PTEN downregulation, adverse clinicopathological characteristics, poor overall and progression-free survival and poor prognosis. In vitro experiments showed that inhibition of miR-494 suppressed cell proliferation and growth by directly targeting the 3′-untranslated region (3′-UTR) of PTEN mRNA. These findings identified a novel molecular mechanism involved in the regulation of PTEN expression and cervical cancer progression. Results of the present study indicated that miR-494 may have an essential role in the carcinogenesis and progression of cervical cancer and targeting miR-494 may be a promising therapeutic strategy for the treatment of cervical cancer. |
---|---|
ISSN: | 1021-335X 1791-2431 |
DOI: | 10.3892/or.2015.3821 |