Restoration of miR-7 expression suppresses the growth of Lewis lung cancer cells by modulating epidermal growth factor receptor signaling
microRNAs are an abundant class of short endogenous non-coding RNAs that function as important regulators of multiple target genes and participate in diverse biological roles in carcinogenesis. However, the role of miR-7 in lung cancer remains unclear and requires further elucidation. In the present...
Gespeichert in:
Veröffentlicht in: | Oncology reports 2014-12, Vol.32 (6), p.2511-2516 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | microRNAs are an abundant class of short endogenous non-coding RNAs that function as important regulators of multiple target genes and participate in diverse biological roles in carcinogenesis. However, the role of miR-7 in lung cancer remains unclear and requires further elucidation. In the present study, we found a reduction of miR-7 expression in Lewis lung cancer (3LL) cells originating from mice by real-time RT-PCR. Restoration of miR-7 inhibited 3LL cell proliferation, induced cell apoptosis in vitro and reduced tumorigenicity in vivo. We further confirmed that miR-7 downregulated the expression of both epidermal growth factor receptor (EGFR) and murine leukemia viral oncogene homologue-1 (RAF-1) oncogenes by real-time PCR and western blot analysis. Furthermore, inhibition of EGFR showed similar effects to miR-7 enforcement in 3LL cells. Taken together, these findings revealed that miR-7 acts as an antitumor miRNA in 3LL by targeting and suppressing the expression of both EGFR and RAF-1 oncogenes. This study may provide a rationale for the use of miR-7 in lung cancer target therapy. |
---|---|
ISSN: | 1021-335X 1791-2431 |
DOI: | 10.3892/or.2014.3519 |