miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN

Non-small cell lung cancer (NSCLC) is one of the most common causes of cancer-related mortality worldwide. microRNAs (miRNAs) play critical roles in carcinogenesis. miR-205 has been shown to be upregulated in NSCLC. In the present study, we identified the promotive effects of miR-205 on various sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology reports 2013-12, Vol.30 (6), p.2897-2902
Hauptverfasser: LEI, LIN, HUANG, YAPING, GONG, WENRONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-small cell lung cancer (NSCLC) is one of the most common causes of cancer-related mortality worldwide. microRNAs (miRNAs) play critical roles in carcinogenesis. miR-205 has been shown to be upregulated in NSCLC. In the present study, we identified the promotive effects of miR-205 on various significant biological properties of NSCLC cells, and confirmed the regulation of PTEN by miR-205. The expression of miR-205 was examined by quantitative real-time PCR both in NSCLC cell lines and tissues. The effect of miR-205 on PTEN expression was assessed in NSCLC cell lines with miR-205 mimics/inhibitor to elevate/decrease miR-205 expression. Furthermore, the roles of miR-205 in regulating the biological properties of NSCLC cells, including growth, invasion and chemoresistance, were assayed using miR-205 mimic/inhibitor-transfected cells. The 3′-untranslated region (3′-UTR) of PTEN combined with miR-205 and this was confirmed by luciferase reporter assay and western blotting. miR-205 expression was increased in NSCLC cell lines as well as in tissues. Overexpression of miR-205 promoted growth, migration and invasion, and enhanced the chemoresistance of NSCLC cells. Luciferase activity and western blotting demonstrated that miR-205 negatively regulated PTEN at a posttranscriptional level. However, miR-205 knockdown suppressed these processes in A549 cells and increased the expression of PTEN protein. Furthermore, overexpression of PTEN exhibited effects identical with those of the miR-205 inhibitor in NSCLC cells. Our results demonstrated that miR-205 is involved in the tumorigenesis of NSCLC through modulation of the PTEN signaling pathway.
ISSN:1021-335X
1791-2431
DOI:10.3892/or.2013.2755