Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function
Based on the work of Itzykson and Zuber on Kontsevich’s integrals, we give a geometric interpretation and a simple proof of Zhou’s explicit formula for the Witten–Kontsevich tau function. More precisely, we show that the numbers A m , n Zhou defined by Zhou coincide with the affine coordinates for t...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2017-10, Vol.107 (10), p.1837-1857 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the work of Itzykson and Zuber on Kontsevich’s integrals, we give a geometric interpretation and a simple proof of Zhou’s explicit formula for the Witten–Kontsevich tau function. More precisely, we show that the numbers
A
m
,
n
Zhou
defined by Zhou coincide with the
affine coordinates
for the point of the Sato Grassmannian corresponding to the Witten–Kontsevich tau function. Generating functions and new recursion relations for
A
m
,
n
Zhou
are derived. Our formulation on matrix-valued affine coordinates and on tau functions remains valid for generic Grassmannian solutions of the KdV hierarchy. A by-product of our study indicates an interesting relation between the
matrix-valued
affine coordinates for the Witten–Kontsevich tau function and the
V
-matrices associated with the
R
-matrix of Witten’s 3-spin structures. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-017-0965-8 |