Sodium tanshinone IIA sulfonate attenuates the transforming growth factor-β1-induced differentiation of atrial fibroblasts into myofibroblasts in vitro

The differentiation of atrial fibroblasts into myofibroblasts is a critical event in atrial fibrosis. One of the most important factors in atrial fibroblast differentiation is transforming growth factor-β1 (TGF-β1). Accumulating evidence indicates that sodium tanshinone IIA sulfonate (STS) possesses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular medicine 2015-04, Vol.35 (4), p.1026-1032
Hauptverfasser: YANG, LE, HU, JIN, HAO, HONG-ZHEN, YIN, ZHAO, LIU, GANG, ZOU, XIAO-JING
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differentiation of atrial fibroblasts into myofibroblasts is a critical event in atrial fibrosis. One of the most important factors in atrial fibroblast differentiation is transforming growth factor-β1 (TGF-β1). Accumulating evidence indicates that sodium tanshinone IIA sulfonate (STS) possesses antifibrotic properties. In this study, we therefore investigated whether STS attenuates the TGF-β1-induced differentiation of atrial fibroblasts. TGF-β1 enhanced collagen production, collagen synthesis and the expression of collagen type I and III, as shown by hydroxyproline assay, collagen synthesis assay and western blot analysis, respectively. In addition, as shown by immunohistochemistry and western blot analysis, TGF-β1 enhanced the expression of α-smooth muscle actin (α-SMA), which is the hallmark of myofibroblast differentiation. These responses were attenuated by treatment with STS. In addition, STS suppressed the TGF-β1-induced expression of phosphorylated (p)Smad/pSmad3 expression and nuclear translocation. Furthermore, STS supressed extracellular signal-regulated kinase (ERK) phosphorylation. In conclusion, the current study demonstrates that STS exerts antifibrotic effects by modulating atrial fibroblast differentiation through ERK phosphorylation and the Smad pathway.
ISSN:1107-3756
1791-244X
DOI:10.3892/ijmm.2015.2087