In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds

Naturally derived stilbenes have been shown to elicit cytotoxic, anti-steroidal, anti-mutagenic, anti-oxidative, anti-inflammatory, and antitumor bioactivities. Previous phytochemical studies revealed that the seeds of Paeonia suffruticosa are rich in natural stilbenes. In this study the antitumor e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2016-02, Vol.48 (2), p.646-656
Hauptverfasser: ALMOSNID, NADIN MARWAN, GAO, YING, HE, CHUNNIAN, PARK, HYO SIM, ALTMAN, ELLIOT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Naturally derived stilbenes have been shown to elicit cytotoxic, anti-steroidal, anti-mutagenic, anti-oxidative, anti-inflammatory, and antitumor bioactivities. Previous phytochemical studies revealed that the seeds of Paeonia suffruticosa are rich in natural stilbenes. In this study the antitumor effects and mechanism of action of the oligostilbene isomers, cis- and trans-suffruticosol D, isolated from the seeds of P. suffruticosa were examined. cis- and trans-suffruticosol D exhibited remarkable cytotoxicity against the human cancer cell lines A549 (lung), BT20 (breast), MCF-7 (breast), and U2OS (osteosarcoma), but showed significantly less toxicity to the normal human cell lines HMEC (breast) and HPL1A (lung). We also demonstrated that cis- and trans-suffruticosol D exerted their antitumor effects by provoking oxidative stress, stimulating apoptosis, decreasing the mitochondrial membrane potential, inhibiting cell motility, and blocking the NF-κB pathway in human lung cancer cells. In addition, we evaluated their respective bioefficacy and found that trans-suffruticosol D is more potent than cis-suffruticosol D. Collectively, our results suggest that cis- and trans-suffruticosol D could be promising chemotherapeutic agents against cancer.
ISSN:1019-6439
1791-2423
DOI:10.3892/ijo.2015.3269