Generic irreducibilty of Laplace eigenspaces on certain compact Lie groups

If G is a compact Lie group endowed with a left invariant metric  g , then G acts via pullback by isometries on each eigenspace of the associated Laplace operator  Δ g . We establish algebraic criteria for the existence of left invariant metrics  g on  G such that each eigenspace of  Δ g , regarded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2017-09, Vol.52 (2), p.187-200
1. Verfasser: Schueth, Dorothee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If G is a compact Lie group endowed with a left invariant metric  g , then G acts via pullback by isometries on each eigenspace of the associated Laplace operator  Δ g . We establish algebraic criteria for the existence of left invariant metrics  g on  G such that each eigenspace of  Δ g , regarded as the real vector space of the corresponding real eigenfunctions, is irreducible under the action of  G . We prove that generic left invariant metrics on the Lie groups G = S U ( 2 ) × ⋯ × S U ( 2 ) × T , where T is a (possibly trivial) torus, have the property just described. The same holds for quotients of such groups  G by discrete central subgroups. In particular, it also holds for S O ( 3 ) , U ( 2 ) , S O ( 4 ) .
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-017-9553-5