Generic irreducibilty of Laplace eigenspaces on certain compact Lie groups
If G is a compact Lie group endowed with a left invariant metric g , then G acts via pullback by isometries on each eigenspace of the associated Laplace operator Δ g . We establish algebraic criteria for the existence of left invariant metrics g on G such that each eigenspace of Δ g , regarded...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2017-09, Vol.52 (2), p.187-200 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If
G
is a compact Lie group endowed with a left invariant metric
g
, then
G
acts via pullback by isometries on each eigenspace of the associated Laplace operator
Δ
g
. We establish algebraic criteria for the existence of left invariant metrics
g
on
G
such that each eigenspace of
Δ
g
, regarded as the real vector space of the corresponding real eigenfunctions, is irreducible under the action of
G
. We prove that generic left invariant metrics on the Lie groups
G
=
S
U
(
2
)
×
⋯
×
S
U
(
2
)
×
T
, where
T
is a (possibly trivial) torus, have the property just described. The same holds for quotients of such groups
G
by discrete central subgroups. In particular, it also holds for
S
O
(
3
)
,
U
(
2
)
,
S
O
(
4
)
. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-017-9553-5 |