Machine learning models and bankruptcy prediction
•Machine learning models show improved bankruptcy prediction accuracy over traditional models.•Various models were tested using different accuracy metrics.•Boosting, bagging, and random forest models provide better results. There has been intensive research from academics and practitioners regarding...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2017-10, Vol.83, p.405-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Machine learning models show improved bankruptcy prediction accuracy over traditional models.•Various models were tested using different accuracy metrics.•Boosting, bagging, and random forest models provide better results.
There has been intensive research from academics and practitioners regarding models for predicting bankruptcy and default events, for credit risk management. Seminal academic research has evaluated bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression) and early artificial intelligence models (e.g. artificial neural networks). In this study, we test machine learning models (support vector machines, bagging, boosting, and random forest) to predict bankruptcy one year prior to the event, and compare their performance with results from discriminant analysis, logistic regression, and neural networks. We use data from 1985 to 2013 on North American firms, integrating information from the Salomon Center database and Compustat, analysing more than 10,000 firm-year observations. The key insight of the study is a substantial improvement in prediction accuracy using machine learning techniques especially when, in addition to the original Altman’s Z-score variables, we include six complementary financial indicators. Based on Carton and Hofer (2006), we use new variables, such as the operating margin, change in return-on-equity, change in price-to-book, and growth measures related to assets, sales, and number of employees, as predictive variables. Machine learning models show, on average, approximately 10% more accuracy in relation to traditional models. Comparing the best models, with all predictive variables, the machine learning technique related to random forest led to 87% accuracy, whereas logistic regression and linear discriminant analysis led to 69% and 50% accuracy, respectively, in the testing sample. We find that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. Our research adds to the discussion of the continuing debate about superiority of computational methods over statistical techniques such as in Tsai, Hsu, and Yen (2014) and Yeh, Chi, and Lin (2014). In particular, for machine learning mechanisms, we do not find SVM to lead to higher accuracy rates than other models. This result contradicts outcomes from Danenas and Garsva (2015) and Cleofas-Sanchez |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2017.04.006 |