On 2-distance coloring of plane graphs with girth 5

A vertex coloring is called 2-distance if any two vertices at distance at most 2 from each other get different colors. Let χ2(G) be the 2-distance chromatic number of a graph G. Suppose G is a plane graph with girth 5 and maximum degree Δ. In this paper, we prove that if Δ∉{7,8}, then χ2(G)≤Δ+7. Fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-01, Vol.217, p.495-505
Hauptverfasser: Dong, Wei, Lin, Wensong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertex coloring is called 2-distance if any two vertices at distance at most 2 from each other get different colors. Let χ2(G) be the 2-distance chromatic number of a graph G. Suppose G is a plane graph with girth 5 and maximum degree Δ. In this paper, we prove that if Δ∉{7,8}, then χ2(G)≤Δ+7. Furthermore, we show that χ2(G)≤Δ+4 if Δ is sufficiently large.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2016.07.026