On 2-distance coloring of plane graphs with girth 5
A vertex coloring is called 2-distance if any two vertices at distance at most 2 from each other get different colors. Let χ2(G) be the 2-distance chromatic number of a graph G. Suppose G is a plane graph with girth 5 and maximum degree Δ. In this paper, we prove that if Δ∉{7,8}, then χ2(G)≤Δ+7. Fur...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-01, Vol.217, p.495-505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vertex coloring is called 2-distance if any two vertices at distance at most 2 from each other get different colors. Let χ2(G) be the 2-distance chromatic number of a graph G. Suppose G is a plane graph with girth 5 and maximum degree Δ. In this paper, we prove that if Δ∉{7,8}, then χ2(G)≤Δ+7. Furthermore, we show that χ2(G)≤Δ+4 if Δ is sufficiently large. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2016.07.026 |