Gas-particle flows and erosion characteristic of large capacity dry top gas pressure recovery turbine

Based on the erosion rate model and the particle rebound model of blade material obtained through accelerated erosion test under high temperature, systematic numerical simulations of the complex gas-particle flows in inlet volute and cascade of a large capacity gas pressure recovery turbine are perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2017-02, Vol.120, p.498-506
Hauptverfasser: Cai, Liuxi, Xiao, Junfeng, Wang, Shunsen, Gao, Song, Duan, Jingyao, Mao, Jingru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the erosion rate model and the particle rebound model of blade material obtained through accelerated erosion test under high temperature, systematic numerical simulations of the complex gas-particle flows in inlet volute and cascade of a large capacity gas pressure recovery turbine are performed in this paper. The influence of inlet volute structure and cascade channel structure on the aerodynamic performance and erosion characteristics of turbine is first investigated. Results show that although mixing flows and vortex flows are formed in turbine intake volute, total pressure loss of volute is less than 0.7% because of low gas velocity. Erosion damage on the trailing edge of nozzles and rotating blades is mainly caused by high-speed cutting behavior of ash particles. The typical inlet volute structure results in an uneven erosion of first stage nozzles along circumferential direction. Nozzles located below the horizontal split are mainly eroded in blade root area, while erosion distribution of nozzles located above the horizontal split is irregular, and worse than the erosion degree of the lower half circle. Flow acceleration characteristics and cascade circumferential structure must be comprehensively considered so as to simultaneously improve the aerodynamic and anti-erosion performance of turbine. •Gas-particle flow characteristics in a large capacity turbine is simulated.•Lower flow loss in volute and cascade lead to higher turbine efficiency of 90.1%.•Erosion damage is mainly caused by high-speed cutting behavior of ash particles.•Erosion is uneven to nozzles but uniform to rotors in circumferential direction.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2016.11.098