The generalized 4-connectivity of hypercubes
The connectivity and the spanning tree packing number of a graph are two important measurements for the fault-tolerance of a network. The generalized connectivity is a common generalization of the classical connectivity and spanning tree packing number. In this paper, we show that the generalized 4-...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-03, Vol.220, p.60-67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The connectivity and the spanning tree packing number of a graph are two important measurements for the fault-tolerance of a network. The generalized connectivity is a common generalization of the classical connectivity and spanning tree packing number. In this paper, we show that the generalized 4-connectivity of the n-dimensional hypercube Qn is (n−1), that is, for any four vertices in Qn, there exist (n−1) internally disjoint trees connecting them in Qn. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2016.12.003 |