Photoactive and Conducting Covalent Organic Frameworks

Hierarchical functional materials with properties encoded for a defined functionality such as light‐induced charge separation are highly desirable targets of numerous synthetic efforts. In the field of reticular chemistry, 2D covalent organic frameworks are an emerging class of porous and crystallin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-08, Vol.7 (16), p.n/a
Hauptverfasser: Medina, Dana D., Sick, Torben, Bein, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical functional materials with properties encoded for a defined functionality such as light‐induced charge separation are highly desirable targets of numerous synthetic efforts. In the field of reticular chemistry, 2D covalent organic frameworks are an emerging class of porous and crystalline materials obtained by bottom‐up condensation of molecular building blocks assisted by non‐bonding interactions. In this research news article, an overview is provided on newly emerging photoactive and conducting 2D covalent organic frameworks, sketching the creative trajectory from subunit design strategies to framework construction and resulting functionalities. Hierarchical functional materials with properties encoded for a defined functionality such as light‐induced charge separation are highly desirable targets of numerous synthetic efforts. In this research news article, an overview is provided on newly emerging photoactive and conducting 2D covalent organic frameworks, sketching the creative trajectory from subunit design strategies to framework construction and resulting functionalities.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201700387