Molecular Modeling of an Electrophilic Addition Reaction with “Unexpected” Regiochemistry

The electrophilic addition of a hydrohalic acid (HX) to an alkene is often one of the first reactions learned in second-year undergraduate organic chemistry classes. During the ensuing discussion of the mechanism, it is shown that this reaction follows Markovnikov’s rule, which states that the hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2017-07, Vol.94 (7), p.936-940
Hauptverfasser: Best, Katherine T, Li, Diana, Helms, Eric D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrophilic addition of a hydrohalic acid (HX) to an alkene is often one of the first reactions learned in second-year undergraduate organic chemistry classes. During the ensuing discussion of the mechanism, it is shown that this reaction follows Markovnikov’s rule, which states that the hydrogen atom will attach to the carbon with fewer substituents while the halogen atom will attach to the carbon with more substituents. However, in the preparation of tropic acid, the reaction of HCl with atropic acid (2-phenylpropenoic acid) does not follow this rule because it is a conjugated system. Molecular modeling of the possible carbocation intermediates suggests that the reaction follows a conjugate addition mechanism involving a 1,4-addition of HCl across the conjugated alkene and carboxyl group rather than addition across the alkene as students often first propose. PM3 semiempirical calculations are used to determine the energies of three possible carbocation intermediates. The energies obtained from the modeling suggest that the carbocation intermediate produced by the 1,4-addition is the most stable.
ISSN:0021-9584
1938-1328
DOI:10.1021/acs.jchemed.6b00488