Nonlinear spectral problem for a self-adjoint vector differential equation

We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2017-07, Vol.53 (7), p.900-907
Hauptverfasser: Abramov, A. A., Yukhno, L. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 7
container_start_page 900
container_title Differential equations
container_volume 53
creator Abramov, A. A.
Yukhno, L. F.
description We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.
doi_str_mv 10.1134/S0012266117070060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931135194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931135194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZ_Gv2KEWtUvSgnpfs7kS2bJM22Qp-e1PqQRBPA_N-783wGLtEuEYU8uYVADnXGnEGMwANR2yCGkwpwIhjNtnL5V4_ZWcprQCgmqGasKfn4Ifek41F2lA7RjsUmxiagdaFC7GwRaLBlbZbhd6PxWdG8rbrnaNIfuwzTtudHfvgz9mJs0Oii585Ze_3d2_zRbl8eXic3y7Llmszlo00oEm6zirhulYoISUXDqSpOkVcka06QQK45FJV2hE2TvCmMaZ10kghpuzqkJv_3O4ojfUq7KLPJ2usRG5DYSUzhQeqjSGlSK7exH5t41eNUO8rq_9Ulj384EmZ9R8UfyX_a_oGxlFs4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931135194</pqid></control><display><type>article</type><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><source>SpringerNature Journals</source><creator>Abramov, A. A. ; Yukhno, L. F.</creator><creatorcontrib>Abramov, A. A. ; Yukhno, L. F.</creatorcontrib><description>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266117070060</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary conditions ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Numerical Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Spectra</subject><ispartof>Differential equations, 2017-07, Vol.53 (7), p.900-907</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Differential Equations is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266117070060$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266117070060$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Abramov, A. A.</creatorcontrib><creatorcontrib>Yukhno, L. F.</creatorcontrib><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</description><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Spectra</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZ_Gv2KEWtUvSgnpfs7kS2bJM22Qp-e1PqQRBPA_N-783wGLtEuEYU8uYVADnXGnEGMwANR2yCGkwpwIhjNtnL5V4_ZWcprQCgmqGasKfn4Ifek41F2lA7RjsUmxiagdaFC7GwRaLBlbZbhd6PxWdG8rbrnaNIfuwzTtudHfvgz9mJs0Oii585Ze_3d2_zRbl8eXic3y7Llmszlo00oEm6zirhulYoISUXDqSpOkVcka06QQK45FJV2hE2TvCmMaZ10kghpuzqkJv_3O4ojfUq7KLPJ2usRG5DYSUzhQeqjSGlSK7exH5t41eNUO8rq_9Ulj384EmZ9R8UfyX_a_oGxlFs4Q</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Abramov, A. A.</creator><creator>Yukhno, L. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><author>Abramov, A. A. ; Yukhno, L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramov, A. A.</creatorcontrib><creatorcontrib>Yukhno, L. F.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramov, A. A.</au><au>Yukhno, L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear spectral problem for a self-adjoint vector differential equation</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>53</volume><issue>7</issue><spage>900</spage><epage>907</epage><pages>900-907</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266117070060</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2017-07, Vol.53 (7), p.900-907
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_1931135194
source SpringerNature Journals
subjects Boundary conditions
Difference and Functional Equations
Differential equations
Eigenvalues
Mathematics
Mathematics and Statistics
Nonlinear systems
Numerical Methods
Ordinary Differential Equations
Partial Differential Equations
Spectra
title Nonlinear spectral problem for a self-adjoint vector differential equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20spectral%20problem%20for%20a%20self-adjoint%20vector%20differential%20equation&rft.jtitle=Differential%20equations&rft.au=Abramov,%20A.%20A.&rft.date=2017-07-01&rft.volume=53&rft.issue=7&rft.spage=900&rft.epage=907&rft.pages=900-907&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266117070060&rft_dat=%3Cproquest_cross%3E1931135194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931135194&rft_id=info:pmid/&rfr_iscdi=true