Nonlinear spectral problem for a self-adjoint vector differential equation
We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the...
Gespeichert in:
Veröffentlicht in: | Differential equations 2017-07, Vol.53 (7), p.900-907 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 7 |
container_start_page | 900 |
container_title | Differential equations |
container_volume | 53 |
creator | Abramov, A. A. Yukhno, L. F. |
description | We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2
n
. The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval. |
doi_str_mv | 10.1134/S0012266117070060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931135194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931135194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZ_Gv2KEWtUvSgnpfs7kS2bJM22Qp-e1PqQRBPA_N-783wGLtEuEYU8uYVADnXGnEGMwANR2yCGkwpwIhjNtnL5V4_ZWcprQCgmqGasKfn4Ifek41F2lA7RjsUmxiagdaFC7GwRaLBlbZbhd6PxWdG8rbrnaNIfuwzTtudHfvgz9mJs0Oii585Ze_3d2_zRbl8eXic3y7Llmszlo00oEm6zirhulYoISUXDqSpOkVcka06QQK45FJV2hE2TvCmMaZ10kghpuzqkJv_3O4ojfUq7KLPJ2usRG5DYSUzhQeqjSGlSK7exH5t41eNUO8rq_9Ulj384EmZ9R8UfyX_a_oGxlFs4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931135194</pqid></control><display><type>article</type><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><source>SpringerNature Journals</source><creator>Abramov, A. A. ; Yukhno, L. F.</creator><creatorcontrib>Abramov, A. A. ; Yukhno, L. F.</creatorcontrib><description>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2
n
. The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266117070060</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary conditions ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Numerical Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Spectra</subject><ispartof>Differential equations, 2017-07, Vol.53 (7), p.900-907</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Differential Equations is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266117070060$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266117070060$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Abramov, A. A.</creatorcontrib><creatorcontrib>Yukhno, L. F.</creatorcontrib><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2
n
. The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</description><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Spectra</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZ_Gv2KEWtUvSgnpfs7kS2bJM22Qp-e1PqQRBPA_N-783wGLtEuEYU8uYVADnXGnEGMwANR2yCGkwpwIhjNtnL5V4_ZWcprQCgmqGasKfn4Ifek41F2lA7RjsUmxiagdaFC7GwRaLBlbZbhd6PxWdG8rbrnaNIfuwzTtudHfvgz9mJs0Oii585Ze_3d2_zRbl8eXic3y7Llmszlo00oEm6zirhulYoISUXDqSpOkVcka06QQK45FJV2hE2TvCmMaZ10kghpuzqkJv_3O4ojfUq7KLPJ2usRG5DYSUzhQeqjSGlSK7exH5t41eNUO8rq_9Ulj384EmZ9R8UfyX_a_oGxlFs4Q</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Abramov, A. A.</creator><creator>Yukhno, L. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Nonlinear spectral problem for a self-adjoint vector differential equation</title><author>Abramov, A. A. ; Yukhno, L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b4806e4fda53fdc3534423f0489d5e25ea9d3e302424596fe1bf32bb88cf48433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramov, A. A.</creatorcontrib><creatorcontrib>Yukhno, L. F.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramov, A. A.</au><au>Yukhno, L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear spectral problem for a self-adjoint vector differential equation</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>53</volume><issue>7</issue><spage>900</spage><epage>907</epage><pages>900-907</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2
n
. The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266117070060</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2017-07, Vol.53 (7), p.900-907 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_1931135194 |
source | SpringerNature Journals |
subjects | Boundary conditions Difference and Functional Equations Differential equations Eigenvalues Mathematics Mathematics and Statistics Nonlinear systems Numerical Methods Ordinary Differential Equations Partial Differential Equations Spectra |
title | Nonlinear spectral problem for a self-adjoint vector differential equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20spectral%20problem%20for%20a%20self-adjoint%20vector%20differential%20equation&rft.jtitle=Differential%20equations&rft.au=Abramov,%20A.%20A.&rft.date=2017-07-01&rft.volume=53&rft.issue=7&rft.spage=900&rft.epage=907&rft.pages=900-907&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266117070060&rft_dat=%3Cproquest_cross%3E1931135194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931135194&rft_id=info:pmid/&rfr_iscdi=true |