Nonlinear spectral problem for a self-adjoint vector differential equation

We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2017-07, Vol.53 (7), p.900-907
Hauptverfasser: Abramov, A. A., Yukhno, L. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2 n . The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266117070060