A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL

In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2017-04, Vol.27 (2), p.846-882
Hauptverfasser: Bierkens, Joris, Roberts, Gareth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 2
container_start_page 846
container_title The Annals of applied probability
container_volume 27
creator Bierkens, Joris
Roberts, Gareth
description In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for LMH, as well as for Metropolis–Hastings (MH). The required jump rate in the high (supercritical) temperature regime equals n½ for LMH, which should be compared to n for MH. At the critical temperature, the required jump rate equals n¾ for LMH and n3/2 for MH, in agreement with experimental results of Turitsyn, Chertkov and Vucelja (2011). The scaling limit of LMH turns out to be a nonreversible piecewise deterministic exponentially ergodic "zig-zag" Markov process.
doi_str_mv 10.1214/16-AAP1217
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1930861884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44249153</jstor_id><sourcerecordid>44249153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-d6739d291234def58dd112af1a5c0419a7feb27aca2e3e1a273edddbbcb4de153</originalsourceid><addsrcrecordid>eNptkM1Kw0AUhQdRsFY37oUBcSNE585MMskypNN2ID-lSekyJJkJWNTUpF248x18Q5_EkRbduLqHez7OgYPQNZAHoMAfwXPCcGGlOEEjCp7v-IKJUzQC4hLHBY-fo4th2BBCAh6IEapDvFAykmuVSzyRhVwmKlV5oSKcR2Gs0hmOVaIKnE2tmBZyghNZLLNFFqv86-NzHlo2neVYpbiYSxytlkra_1qqPMdJNpHxJTprq-fBXB3vGK2msojmTpzNlO1wGubSnaM9wQJNA6CMa9O6vtYAtGqhchvCIahEa2oqqqaihhmoqGBGa13XTW15cNkY3R5yt333tjfDrtx0-_7VVpYQMOJ74PvcUvcHqum7YehNW277p5eqfy-BlD8bluCVxw0tfHOAN8Ou639JzikPbKP17_7zbRJlRPxx34F9cuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930861884</pqid></control><display><type>article</type><title>A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bierkens, Joris ; Roberts, Gareth</creator><creatorcontrib>Bierkens, Joris ; Roberts, Gareth</creatorcontrib><description>In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for LMH, as well as for Metropolis–Hastings (MH). The required jump rate in the high (supercritical) temperature regime equals n½ for LMH, which should be compared to n for MH. At the critical temperature, the required jump rate equals n¾ for LMH and n3/2 for MH, in agreement with experimental results of Turitsyn, Chertkov and Vucelja (2011). The scaling limit of LMH turns out to be a nonreversible piecewise deterministic exponentially ergodic "zig-zag" Markov process.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/16-AAP1217</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Computer simulation ; Critical temperature ; Ergodic processes ; Magnetism ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Scaling ; Temperature</subject><ispartof>The Annals of applied probability, 2017-04, Vol.27 (2), p.846-882</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-d6739d291234def58dd112af1a5c0419a7feb27aca2e3e1a273edddbbcb4de153</citedby><cites>FETCH-LOGICAL-c352t-d6739d291234def58dd112af1a5c0419a7feb27aca2e3e1a273edddbbcb4de153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44249153$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44249153$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bierkens, Joris</creatorcontrib><creatorcontrib>Roberts, Gareth</creatorcontrib><title>A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL</title><title>The Annals of applied probability</title><description>In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for LMH, as well as for Metropolis–Hastings (MH). The required jump rate in the high (supercritical) temperature regime equals n½ for LMH, which should be compared to n for MH. At the critical temperature, the required jump rate equals n¾ for LMH and n3/2 for MH, in agreement with experimental results of Turitsyn, Chertkov and Vucelja (2011). The scaling limit of LMH turns out to be a nonreversible piecewise deterministic exponentially ergodic "zig-zag" Markov process.</description><subject>Computer simulation</subject><subject>Critical temperature</subject><subject>Ergodic processes</subject><subject>Magnetism</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Scaling</subject><subject>Temperature</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AUhQdRsFY37oUBcSNE585MMskypNN2ID-lSekyJJkJWNTUpF248x18Q5_EkRbduLqHez7OgYPQNZAHoMAfwXPCcGGlOEEjCp7v-IKJUzQC4hLHBY-fo4th2BBCAh6IEapDvFAykmuVSzyRhVwmKlV5oSKcR2Gs0hmOVaIKnE2tmBZyghNZLLNFFqv86-NzHlo2neVYpbiYSxytlkra_1qqPMdJNpHxJTprq-fBXB3vGK2msojmTpzNlO1wGubSnaM9wQJNA6CMa9O6vtYAtGqhchvCIahEa2oqqqaihhmoqGBGa13XTW15cNkY3R5yt333tjfDrtx0-_7VVpYQMOJ74PvcUvcHqum7YehNW277p5eqfy-BlD8bluCVxw0tfHOAN8Ou639JzikPbKP17_7zbRJlRPxx34F9cuY</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Bierkens, Joris</creator><creator>Roberts, Gareth</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170401</creationdate><title>A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL</title><author>Bierkens, Joris ; Roberts, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-d6739d291234def58dd112af1a5c0419a7feb27aca2e3e1a273edddbbcb4de153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Critical temperature</topic><topic>Ergodic processes</topic><topic>Magnetism</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Scaling</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bierkens, Joris</creatorcontrib><creatorcontrib>Roberts, Gareth</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierkens, Joris</au><au>Roberts, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL</atitle><jtitle>The Annals of applied probability</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>27</volume><issue>2</issue><spage>846</spage><epage>882</epage><pages>846-882</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for LMH, as well as for Metropolis–Hastings (MH). The required jump rate in the high (supercritical) temperature regime equals n½ for LMH, which should be compared to n for MH. At the critical temperature, the required jump rate equals n¾ for LMH and n3/2 for MH, in agreement with experimental results of Turitsyn, Chertkov and Vucelja (2011). The scaling limit of LMH turns out to be a nonreversible piecewise deterministic exponentially ergodic "zig-zag" Markov process.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/16-AAP1217</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2017-04, Vol.27 (2), p.846-882
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_1930861884
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Computer simulation
Critical temperature
Ergodic processes
Magnetism
Markov analysis
Markov chains
Monte Carlo simulation
Scaling
Temperature
title A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PIECEWISE%20DETERMINISTIC%20SCALING%20LIMIT%20OF%20LIFTED%20METROPOLIS%E2%80%93HASTINGS%20IN%20THE%20CURIE%E2%80%93WEISS%20MODEL&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Bierkens,%20Joris&rft.date=2017-04-01&rft.volume=27&rft.issue=2&rft.spage=846&rft.epage=882&rft.pages=846-882&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/16-AAP1217&rft_dat=%3Cjstor_proqu%3E44249153%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930861884&rft_id=info:pmid/&rft_jstor_id=44249153&rfr_iscdi=true