A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL

In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2017-04, Vol.27 (2), p.846-882
Hauptverfasser: Bierkens, Joris, Roberts, Gareth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410-414] a nonreversible Markov Chain Monte Carlo (MCMC) method on an augmented state space was introduced, here referred to as Lifted Metropolis-Hastings (LMH). A scaling limit of the magnetization process in the Curie-Weiss model is derived for LMH, as well as for Metropolis–Hastings (MH). The required jump rate in the high (supercritical) temperature regime equals n½ for LMH, which should be compared to n for MH. At the critical temperature, the required jump rate equals n¾ for LMH and n3/2 for MH, in agreement with experimental results of Turitsyn, Chertkov and Vucelja (2011). The scaling limit of LMH turns out to be a nonreversible piecewise deterministic exponentially ergodic "zig-zag" Markov process.
ISSN:1050-5164
2168-8737
DOI:10.1214/16-AAP1217