Equicontinuity of Maps on a Dendrite with Finite Branch Points

Let (T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote by w(x, f) and P(f) the w-limit set of x under f and the set of periodic points of f, respectively. Write Ω(x, f) = {yl there exist a sequence of points xk ∈ T and a sequence of positive integers n1 〈 n2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2017-08, Vol.33 (8), p.1125-1130
Hauptverfasser: Sun, Tai Xiang, Su, Guang Wang, Xi, Hong Jian, Kong, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote by w(x, f) and P(f) the w-limit set of x under f and the set of periodic points of f, respectively. Write Ω(x, f) = {yl there exist a sequence of points xk ∈ T and a sequence of positive integers n1 〈 n2 〈 … such that lim k→∞ Xk = X and lim k→∞ f nk (xk) = y}. In this paper, we show that the following statements are equivalent: (1) f is equicontinuous. (2) w(x, f) = Ω(x, f) for any x ∈ T. (3) ∩ ∞ n=1 f n(T) = P(f), and w(x, f) is a periodic orbit for every x ∈ T and map h: x → w(x, f) (x ∈ T) is continuous. (4) Ω(x, f) is a periodic orbit for any x ∈ T.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-017-6289-x