Numerical modeling of shape and topology optimisation of a piezoelectric cantilever beam in an energy-harvesting sensor
Piezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless se...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2017, Vol.33 (1), p.137-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Piezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless sensor networks. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite-element method for both static and dynamic frequency analyses. A novel approach is presented for optimising the cantilever beam, by which the power density is maximised and the structural volume is minimised simultaneously. A two-stage optimisation is performed, i.e., a shape optimisation and then a “topology” hole opening optimisation. |
---|---|
ISSN: | 0177-0667 1435-5663 |
DOI: | 10.1007/s00366-016-0460-3 |