Modeling geomagnetic induced currents in Australian power networks

Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understandin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2017-07, Vol.15 (7), p.895-916
Hauptverfasser: Marshall, R. A., Kelly, A., Van Der Walt, T., Honecker, A., Ong, C., Mikkelsen, D., Spierings, A., Ivanovich, G., Yoshikawa, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 7
container_start_page 895
container_title Space Weather
container_volume 15
creator Marshall, R. A.
Kelly, A.
Van Der Walt, T.
Honecker, A.
Ong, C.
Mikkelsen, D.
Spierings, A.
Ivanovich, G.
Yoshikawa, A.
description Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a “geoelectric field” determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29–31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29–31 October 2003 exceed 40 A with the larger GICs occurring in the south‐east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east‐west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania. Key Points GIC model implemented to understand the impact of severe space weather events on Australian power networks Modeled GICs show good correlation with the observations across the observing sites East‐west network alignment and low branch resistance resulted in larger modeled GICs in lower latitude network
doi_str_mv 10.1002/2017SW001613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929908048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929908048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3724-86c312ad554e53d1cd504525a0bc4dea3bbaea54eefd5d259e8220b4fca4c12b3</originalsourceid><addsrcrecordid>eNp90M1OwzAMAOAIgcQY3HiASlwpOH9rexzTBkhDHAbaMUoTd-rompG0qvb2BI3DTpxs2Z9sy4TcUnigAOyRAc1WawA6ofyMjKgULM14Aecn-SW5CmEbtZBMjMjTm7PY1O0m2aDb6U2LXW2SurW9QZuY3ntsuxALybQPnddNrdtk7wb0SaSD81_hmlxUugl48xfH5HMx_5i9pMv359fZdJkanjGR5hPDKdNWSoGSW2qshHiD1FAaYVHzstSoYxMrKy2TBeaMQSkqo4WhrORjcnecu_fuu8fQqa3rfRtXKlqwooAcRB7V_VEZ70LwWKm9r3faHxQF9fsldfqlyNmRD3WDh3-tWq3nDEQm-A8TZmj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929908048</pqid></control><display><type>article</type><title>Modeling geomagnetic induced currents in Australian power networks</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Marshall, R. A. ; Kelly, A. ; Van Der Walt, T. ; Honecker, A. ; Ong, C. ; Mikkelsen, D. ; Spierings, A. ; Ivanovich, G. ; Yoshikawa, A.</creator><creatorcontrib>Marshall, R. A. ; Kelly, A. ; Van Der Walt, T. ; Honecker, A. ; Ong, C. ; Mikkelsen, D. ; Spierings, A. ; Ivanovich, G. ; Yoshikawa, A.</creatorcontrib><description>Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a “geoelectric field” determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29–31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29–31 October 2003 exceed 40 A with the larger GICs occurring in the south‐east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east‐west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania. Key Points GIC model implemented to understand the impact of severe space weather events on Australian power networks Modeled GICs show good correlation with the observations across the observing sites East‐west network alignment and low branch resistance resulted in larger modeled GICs in lower latitude network</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1002/2017SW001613</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Alignment ; Australian power network ; Climatology ; Geoelectric fields ; Geoelectricity ; Geomagnetic storms ; Geomagnetism ; Impact prediction ; Latitude ; Magnetic fields ; Magnetic storms ; modeled GICs ; Networks ; Solar cycle ; Solar generators ; Space weather ; Storms</subject><ispartof>Space Weather, 2017-07, Vol.15 (7), p.895-916</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3724-86c312ad554e53d1cd504525a0bc4dea3bbaea54eefd5d259e8220b4fca4c12b3</citedby><cites>FETCH-LOGICAL-c3724-86c312ad554e53d1cd504525a0bc4dea3bbaea54eefd5d259e8220b4fca4c12b3</cites><orcidid>0000-0002-3786-5150 ; 0000-0002-4058-7024 ; 0000-0001-8811-0746 ; 0000-0003-3735-1325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017SW001613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017SW001613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Marshall, R. A.</creatorcontrib><creatorcontrib>Kelly, A.</creatorcontrib><creatorcontrib>Van Der Walt, T.</creatorcontrib><creatorcontrib>Honecker, A.</creatorcontrib><creatorcontrib>Ong, C.</creatorcontrib><creatorcontrib>Mikkelsen, D.</creatorcontrib><creatorcontrib>Spierings, A.</creatorcontrib><creatorcontrib>Ivanovich, G.</creatorcontrib><creatorcontrib>Yoshikawa, A.</creatorcontrib><title>Modeling geomagnetic induced currents in Australian power networks</title><title>Space Weather</title><description>Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a “geoelectric field” determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29–31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29–31 October 2003 exceed 40 A with the larger GICs occurring in the south‐east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east‐west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania. Key Points GIC model implemented to understand the impact of severe space weather events on Australian power networks Modeled GICs show good correlation with the observations across the observing sites East‐west network alignment and low branch resistance resulted in larger modeled GICs in lower latitude network</description><subject>Alignment</subject><subject>Australian power network</subject><subject>Climatology</subject><subject>Geoelectric fields</subject><subject>Geoelectricity</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Impact prediction</subject><subject>Latitude</subject><subject>Magnetic fields</subject><subject>Magnetic storms</subject><subject>modeled GICs</subject><subject>Networks</subject><subject>Solar cycle</subject><subject>Solar generators</subject><subject>Space weather</subject><subject>Storms</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M1OwzAMAOAIgcQY3HiASlwpOH9rexzTBkhDHAbaMUoTd-rompG0qvb2BI3DTpxs2Z9sy4TcUnigAOyRAc1WawA6ofyMjKgULM14Aecn-SW5CmEbtZBMjMjTm7PY1O0m2aDb6U2LXW2SurW9QZuY3ntsuxALybQPnddNrdtk7wb0SaSD81_hmlxUugl48xfH5HMx_5i9pMv359fZdJkanjGR5hPDKdNWSoGSW2qshHiD1FAaYVHzstSoYxMrKy2TBeaMQSkqo4WhrORjcnecu_fuu8fQqa3rfRtXKlqwooAcRB7V_VEZ70LwWKm9r3faHxQF9fsldfqlyNmRD3WDh3-tWq3nDEQm-A8TZmj7</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Marshall, R. A.</creator><creator>Kelly, A.</creator><creator>Van Der Walt, T.</creator><creator>Honecker, A.</creator><creator>Ong, C.</creator><creator>Mikkelsen, D.</creator><creator>Spierings, A.</creator><creator>Ivanovich, G.</creator><creator>Yoshikawa, A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3786-5150</orcidid><orcidid>https://orcid.org/0000-0002-4058-7024</orcidid><orcidid>https://orcid.org/0000-0001-8811-0746</orcidid><orcidid>https://orcid.org/0000-0003-3735-1325</orcidid></search><sort><creationdate>201707</creationdate><title>Modeling geomagnetic induced currents in Australian power networks</title><author>Marshall, R. A. ; Kelly, A. ; Van Der Walt, T. ; Honecker, A. ; Ong, C. ; Mikkelsen, D. ; Spierings, A. ; Ivanovich, G. ; Yoshikawa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3724-86c312ad554e53d1cd504525a0bc4dea3bbaea54eefd5d259e8220b4fca4c12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alignment</topic><topic>Australian power network</topic><topic>Climatology</topic><topic>Geoelectric fields</topic><topic>Geoelectricity</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Impact prediction</topic><topic>Latitude</topic><topic>Magnetic fields</topic><topic>Magnetic storms</topic><topic>modeled GICs</topic><topic>Networks</topic><topic>Solar cycle</topic><topic>Solar generators</topic><topic>Space weather</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, R. A.</creatorcontrib><creatorcontrib>Kelly, A.</creatorcontrib><creatorcontrib>Van Der Walt, T.</creatorcontrib><creatorcontrib>Honecker, A.</creatorcontrib><creatorcontrib>Ong, C.</creatorcontrib><creatorcontrib>Mikkelsen, D.</creatorcontrib><creatorcontrib>Spierings, A.</creatorcontrib><creatorcontrib>Ivanovich, G.</creatorcontrib><creatorcontrib>Yoshikawa, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, R. A.</au><au>Kelly, A.</au><au>Van Der Walt, T.</au><au>Honecker, A.</au><au>Ong, C.</au><au>Mikkelsen, D.</au><au>Spierings, A.</au><au>Ivanovich, G.</au><au>Yoshikawa, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling geomagnetic induced currents in Australian power networks</atitle><jtitle>Space Weather</jtitle><date>2017-07</date><risdate>2017</risdate><volume>15</volume><issue>7</issue><spage>895</spage><epage>916</epage><pages>895-916</pages><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a “geoelectric field” determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29–31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29–31 October 2003 exceed 40 A with the larger GICs occurring in the south‐east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east‐west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania. Key Points GIC model implemented to understand the impact of severe space weather events on Australian power networks Modeled GICs show good correlation with the observations across the observing sites East‐west network alignment and low branch resistance resulted in larger modeled GICs in lower latitude network</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017SW001613</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3786-5150</orcidid><orcidid>https://orcid.org/0000-0002-4058-7024</orcidid><orcidid>https://orcid.org/0000-0001-8811-0746</orcidid><orcidid>https://orcid.org/0000-0003-3735-1325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2017-07, Vol.15 (7), p.895-916
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_proquest_journals_1929908048
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Alignment
Australian power network
Climatology
Geoelectric fields
Geoelectricity
Geomagnetic storms
Geomagnetism
Impact prediction
Latitude
Magnetic fields
Magnetic storms
modeled GICs
Networks
Solar cycle
Solar generators
Space weather
Storms
title Modeling geomagnetic induced currents in Australian power networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20geomagnetic%20induced%20currents%20in%20Australian%20power%20networks&rft.jtitle=Space%20Weather&rft.au=Marshall,%20R.%20A.&rft.date=2017-07&rft.volume=15&rft.issue=7&rft.spage=895&rft.epage=916&rft.pages=895-916&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1002/2017SW001613&rft_dat=%3Cproquest_cross%3E1929908048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929908048&rft_id=info:pmid/&rfr_iscdi=true