Modeling geomagnetic induced currents in Australian power networks
Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understandin...
Gespeichert in:
Veröffentlicht in: | Space Weather 2017-07, Vol.15 (7), p.895-916 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geomagnetic induced currents (GICs) have been considered an issue for high‐latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a “geoelectric field” determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29–31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29–31 October 2003 exceed 40 A with the larger GICs occurring in the south‐east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east‐west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.
Key Points
GIC model implemented to understand the impact of severe space weather events on Australian power networks
Modeled GICs show good correlation with the observations across the observing sites
East‐west network alignment and low branch resistance resulted in larger modeled GICs in lower latitude network |
---|---|
ISSN: | 1542-7390 1539-4964 1542-7390 |
DOI: | 10.1002/2017SW001613 |