A variation of a congruence of Subbarao for n = 2 α 5 β
There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2017-01, Vol.75 (1), p.66-79 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Periodica mathematica Hungarica |
container_volume | 75 |
creator | Bujačić, Sanda |
description | There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2 ( mod σ ( n ) ) , and prove that the only positive integers of the form 2 α 5 β , α , β ≥ 0 , that satisfy the above congruence are n = 1 , 2 , 5 , 8 . |
doi_str_mv | 10.1007/s10998-016-0168-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1928819958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928819958</sourcerecordid><originalsourceid>FETCH-proquest_journals_19288199583</originalsourceid><addsrcrecordid>eNqNi00KwjAUhIMoWH8O4O6B6-hLQ2qycCGiuNd9SUsqLZJo0ngvPUjPZAUP4GIYPuYbQhYMVwxxsw4MlZIUWfaNpNmAJExISVOZqiFJEDmjgiMfk0kIDWL_4pgQtYOn9rVua2fBVaChdPbqo7Gl-fI5FoX22kHlPFjYQgrdCwR07xkZVfoWzPzXU7I8Hi77E71794gmtHnjorf9lDOVSsmUEpL_Z30AD_k8DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928819958</pqid></control><display><type>article</type><title>A variation of a congruence of Subbarao for n = 2 α 5 β</title><source>SpringerLink Journals</source><creator>Bujačić, Sanda</creator><creatorcontrib>Bujačić, Sanda</creatorcontrib><description>There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2 ( mod σ ( n ) ) , and prove that the only positive integers of the form 2 α 5 β , α , β ≥ 0 , that satisfy the above congruence are n = 1 , 2 , 5 , 8 .</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-016-0168-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Congruences ; Integers</subject><ispartof>Periodica mathematica Hungarica, 2017-01, Vol.75 (1), p.66-79</ispartof><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bujačić, Sanda</creatorcontrib><title>A variation of a congruence of Subbarao for n = 2 α 5 β</title><title>Periodica mathematica Hungarica</title><description>There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2 ( mod σ ( n ) ) , and prove that the only positive integers of the form 2 α 5 β , α , β ≥ 0 , that satisfy the above congruence are n = 1 , 2 , 5 , 8 .</description><subject>Congruences</subject><subject>Integers</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNi00KwjAUhIMoWH8O4O6B6-hLQ2qycCGiuNd9SUsqLZJo0ngvPUjPZAUP4GIYPuYbQhYMVwxxsw4MlZIUWfaNpNmAJExISVOZqiFJEDmjgiMfk0kIDWL_4pgQtYOn9rVua2fBVaChdPbqo7Gl-fI5FoX22kHlPFjYQgrdCwR07xkZVfoWzPzXU7I8Hi77E71794gmtHnjorf9lDOVSsmUEpL_Z30AD_k8DQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Bujačić, Sanda</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20170101</creationdate><title>A variation of a congruence of Subbarao for n = 2 α 5 β</title><author>Bujačić, Sanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19288199583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Congruences</topic><topic>Integers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bujačić, Sanda</creatorcontrib><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bujačić, Sanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variation of a congruence of Subbarao for n = 2 α 5 β</atitle><jtitle>Periodica mathematica Hungarica</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>75</volume><issue>1</issue><spage>66</spage><epage>79</epage><pages>66-79</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2 ( mod σ ( n ) ) , and prove that the only positive integers of the form 2 α 5 β , α , β ≥ 0 , that satisfy the above congruence are n = 1 , 2 , 5 , 8 .</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10998-016-0168-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-5303 |
ispartof | Periodica mathematica Hungarica, 2017-01, Vol.75 (1), p.66-79 |
issn | 0031-5303 1588-2829 |
language | eng |
recordid | cdi_proquest_journals_1928819958 |
source | SpringerLink Journals |
subjects | Congruences Integers |
title | A variation of a congruence of Subbarao for n = 2 α 5 β |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variation%20of%20a%20congruence%20of%20Subbarao%20for%20n%20=%202%20%CE%B1%205%20%CE%B2&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Buja%C4%8Di%C4%87,%20Sanda&rft.date=2017-01-01&rft.volume=75&rft.issue=1&rft.spage=66&rft.epage=79&rft.pages=66-79&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-016-0168-6&rft_dat=%3Cproquest%3E1928819958%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928819958&rft_id=info:pmid/&rfr_iscdi=true |