A variation of a congruence of Subbarao for n = 2 α 5 β
There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2017-01, Vol.75 (1), p.66-79 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function φ and the sum of positive divisors function σ of the positive integer n. In this work, we deal with the congruence of the form n φ ( n ) ≡ 2 ( mod σ ( n ) ) , and prove that the only positive integers of the form 2 α 5 β , α , β ≥ 0 , that satisfy the above congruence are n = 1 , 2 , 5 , 8 . |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-016-0168-6 |