A convergence broadcasting transmission of fixed 4K UHD and mobile HD services through a single terrestrial channel by employing FEF multiplexing technique in DVB-T2

Recently, a convergence broadcasting transmission for providing fixed 4K ultrahigh-definition (UHD) and mobile high-definition (HD) services through a single terrestrial channel is investigated by employing multiple-physical layer pipe (M-PLP) multiplexing and transmission technologies in digital vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2017-09, Vol.99 (3), p.1021-1042
Hauptverfasser: Oh, Jong Gyu, Won, Yong Ju, Lee, Jin Sub Seop, Kim, Joon Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, a convergence broadcasting transmission for providing fixed 4K ultrahigh-definition (UHD) and mobile high-definition (HD) services through a single terrestrial channel is investigated by employing multiple-physical layer pipe (M-PLP) multiplexing and transmission technologies in digital video broadcasting (DVB)-second-generation terrestrial (T2) systems, and the scalable high-efficiency video coding (SHVC) technique. The M-PLP technique employs different code rates and constellation points for each layer of data and multiplexes differently encoded layers of data into a single frame, with no change of the inverse fast Fourier transform (IFFT) and cyclic prefix (CP). However, the IFFT size should be increased, and the CP size should be decreased for the 4K UHD layer while the opposite is true for the HD layer. Another aspect is that HD layer data are more important than 4K UHD layer data for reliable SHVC decoding, and thus the IFFT size should be decreased and the CP size should be increased for the HD layer to be robust to channel situations. In this paper, the possibility of a terrestrial fixed 4K UHD and mobile HD convergence broadcasting service through a single channel employing the future extension frame (FEF) multiplexing technique is examined. FEF multiplexing technology can be used to adjust the IFFT and CP size for each layer, whereas M-PLP multiplexing technology cannot. We described the convergence broadcasting service scenario and proposed a transmission system structure by employing FEF and transmission technologies in DVB-T2 systems. Available transmission parameters are extracted and the reception performance of the transmission parameters is examined using computer simulations. From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static and fast fading multipath channel.
ISSN:0948-7921
1432-0487
DOI:10.1007/s00202-016-0470-6